matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisBerechnung von Integralen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - Berechnung von Integralen
Berechnung von Integralen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechnung von Integralen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:59 Di 17.01.2006
Autor: keyskitella

Aufgabe
Man zeige [mm] \integral_{-\infty}^{\infty} {e^{-(x^{2})/2} dx} [/mm] = [mm] \wurzel{2pi}. [/mm]
Hinweis: Man berechne das zweidimensionale Riemann-Integral
[mm] \integral_{\IR^2}^{} {e^{-(x^{2}+y^{2})/2} d(x,y)} [/mm] durch Übergang zu Polarkoordinaten und bringe letzteres Integral mit dem zu berechnenden in Verbindung.

Ich habe den Hinweis verfolgt,
habe also x = cos [mm] \alpha [/mm] und y = sin [mm] \alpha [/mm] gesetzt, wobei ich dann für [mm] cos^{ 2} \alpha [/mm] + [mm] sin^{2} \alpha [/mm] = 1 erhielt. Ich habe dann erst nach [mm] \alpha [/mm] in den Grenzen von 0 bis [mm] 2\pi [/mm] integriert und erhalte somit folgendes Integral:
[mm] 2\pi [/mm] * [mm] \integral_{0}^{\infty} {e^{(-(r^2)/2)} dr}, [/mm]
also dasselbe wie in der Aufgabenstellung zu lösen ist, nur mit geänderten Grenzen. Trotz Substitutionen und partieller Integration komme ich nicht weiter.
Existiert dieses Integral überhaupt (aufschreibbar) und wenn ja, wie sieht es aus? Vielen Dank im Voraus!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Berechnung von Integralen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:06 Di 17.01.2006
Autor: Julius

Hallo!

Schau dir die Transformationsformel bitte noch einmal in Ruhe an.

Du hast vergessen die Determinante der Jacobi-Matrix der Polarkoordinatentransformation ins Spiel zu bringen. Diese ist $r$, wie man mit Hilfe der Beziehung [mm] $\cos^2(\alpha) [/mm] + [mm] \sin^2(\alpha)=1$ [/mm] leicht sieht.

Danach wirst du sehen, dass sich das Integral leicht (etwa mit Substitution oder scharfem Hinschauen) lösen lässt.

Liebe Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]