matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und GrenzwerteBerechnung von Grenzwerten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Grenzwerte" - Berechnung von Grenzwerten
Berechnung von Grenzwerten < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechnung von Grenzwerten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:51 Sa 14.01.2012
Autor: dudu93

Hallo, ich habe mal eine kleine Frage, die mich schon länger beschäftigt hat.

Und zwar habe ich gehört, dass man bei der Berechnung von Grenzwerten immer die höchste Potenz ausklammern muss (beim Betrachten von Zähler UND Nenner). Aber ich habe auch gehört, dass man nur den Nenner betrachten sollte und dort die höchste Potenz ausklammert. Meine Frage: Was ist denn nun richtig?

Hier eine Demonstration:

lim x->unendlich = [mm] \bruch{3x^2 - 2}{x + 1} [/mm]

Wenn ich dort [mm] x^2 [/mm] ausklammere, dann ergibt sich [mm] \bruch{3}{unendlich} [/mm] = 0

Wenn ich x ausklammere, dann kommt raus: [mm] \bruch{unendlich}{1} [/mm] = unendlich

        
Bezug
Berechnung von Grenzwerten: Antwort
Status: (Antwort) fertig Status 
Datum: 17:13 Sa 14.01.2012
Autor: T_sleeper

Hallo,

> Hallo, ich habe mal eine kleine Frage, die mich schon
> länger beschäftigt hat.
>  
> Und zwar habe ich gehört, dass man bei der Berechnung von
> Grenzwerten immer die höchste Potenz ausklammern muss
> (beim Betrachten von Zähler UND Nenner). Aber ich habe
> auch gehört, dass man nur den Nenner betrachten sollte und
> dort die höchste Potenz ausklammert. Meine Frage: Was ist
> denn nun richtig?

s.u.

>  
> Hier eine Demonstration:
>  
> lim x->unendlich = [mm]\bruch{3x^2 - 2}{x + 1}[/mm]
>
> Wenn ich dort [mm]x^2[/mm] ausklammere, dann ergibt sich
> [mm]\bruch{3}{unendlich}[/mm] = 0

Das ist falsch. Wenn man [mm] $x^2$ [/mm] ausklammert erhält man den Bruch
[mm] $\frac{3-\frac{2}{x^2}}{\frac{1}{x}+\frac{1}{x^2}}$. [/mm]
Hier kann ich bei Bildung des Grenzwertes jetzt aber nicht die Regel
[mm] $\lim\limits_{n \to \infty} \frac{a_n}{b_n}=\frac{\lim\limits_{n \to \infty}a_n}{\lim\limits_{n \to \infty}b_n}$ [/mm] anwenden, denn der Grenzwert des Nenners ist $0$.

>  
> Wenn ich x ausklammere, dann kommt raus:
> [mm]\bruch{unendlich}{1}[/mm] = unendlich

Das Ergebnis stimmt, den Rechenweg würde ich so nicht aufschreiben.
Das hat den Grund, dass unendlich keine reelle Zahl ist, man kann damit also eigentlich nicht multiplizieren bzw. wie gewohnt rechnen. Wenn ihr das in der Schule so aufschreibt, dann ist das vom Lehrer didaktisch schlecht.
(Man kann damit nämlich dann sowas machen: unendlich + unendlich=unendlich, aber auch unendlich + unendlich = 2unendlich=unendlich, nach Teilen durch unendlich erhalten wir dann 2=1, was natürlich falsch ist.)

Zu deiner Ausgangsfrage:
Dein oberstes Ziel sollte immer sein so auszuklammern, das der Nenner nicht gegen Null geht. Bei $x [mm] \to \pm \infty$ [/mm] sollte man dann "meistens" die höchste Potenz des Nenners im gesamten Bruch ausklammern.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]