matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationBerechnung von Flächen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integration" - Berechnung von Flächen
Berechnung von Flächen < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechnung von Flächen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:36 Di 17.11.2009
Autor: silfide

Aufgabe 1
Skizzieren Sie die von den Graphen von f ung g eingeschlossene Fläche und berechnen Sie ihren Inhalt
[mm] f(x)=x^{4}-3x^{2} [/mm]
[mm] g(x)=-4x^{3}+12x [/mm]

Aufgabe 2
Bestimmen Sie die Zahl k so, dass die von den Graphen von f und g eingeschlossene Fläche den angegebenen Flächeninhalt A hat.
[mm] f(x)=x^{2}+k [/mm]
[mm] g(x)=-x^{2} [/mm]
A=2

Hallo Leute,

ich habe ein Problem - ich habe den Mathe-Leistungskurs gewählt und stehe gewaltig auf dem Schlauch. Und benötige nun Hilfe, über welche ich sehr dankbar wäre. (Komisches Deutsch)

Zu Aufgabe 1
Da beide Funktion die Ordinate umspielen, setzt sich der Flächeninhalt aus verschieden Ouadranten zusammen. Kann ich den Flächeninhalt im gesamten berechnen - also a=-2 und b=2 oder muss ich alles aufsplitten.
Wen ich alles aufsplitte, wie setze ich dann die Teilschranken?? Durch Nullstellenbestimmung beider Graphen oder durch die Schnittstellenberechnung selbiger??

Zu Aufgabe 2

Irgendwie habe ich einen Denkfehler oder so.
Wenn ich f(x) und g(x) integiere mit a=-1 und b=1 kürzt sich k raus. Oder gehe ich da völlig falsch ran??


Noch eine letzte Frage:

Ich habe eine Normalparabel, die nach oben geöffnet ist und soll nun den Flächeninhalt oberhalb der Kurve berechnen.
Die Parabel wird durch [mm] y=a^{2} [/mm] begrenzt.

Wie gehe ich damit um??
Normalerweise würde ich das Problem durch Verschiebung lösen, aber ich weiß ja nicht wie groß a ist ...

Habe ich schon erwähnt das ich Hilfe brauche!

Mia

        
Bezug
Berechnung von Flächen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:47 Di 17.11.2009
Autor: Harris

Hi!

MatheLK ist super :) Glückwunsch zur Wahl!

Zur Aufgabe:

Im Prinzip läufts so:
Du musst die x-Werte der Schnittpunkte der beiden Funktionen bestimmen (also f(x) = g(x) oder f(x)-g(x)=0).
Deine Funktion hat ... sagen wir mal... 3 Schnittpunkte (x1...x3)
Dann musst Du einmal
[mm] |\integral_{x1}^{x2}{f(x)-g(x) dx}| [/mm] berechnen, und dann noch
[mm] |\integral_{x2}^{x3}{f(x)-g(x) dx}| [/mm]
Die Beträge der beiden Werte zählst du dann zusammen. Die Aufteilung ist dafür wichtig, weil Du alles in allem
[mm] \integral_{x1}^{x3}|{f(x)-g(x)| dx} [/mm] berechnest, und die Beträge nicht ohne weiteres rausziehen kannst...



Und zur anderen Aufgabe:

Ähnliche Vorgehensweise, nur dass dein Flächeninhalt vom Wert k abhängt. Bestimme einfach die Schnittpunkte der beiden Funktionen (hängt natürlich von k ab) und Integriere die Funktion f-g vom ersten bis zum zweiten Schnittpunkt. Dieser Flächeninhalt hängt auch von k ab... also einfach den Flächeninhalt = 2 setzen und .... Rest überlass ich dir ;)

Gruß
Harris

Bezug
                
Bezug
Berechnung von Flächen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:14 Do 26.11.2009
Autor: silfide

Hey Harris,

danke für deine Hilfe - hat mir geholfen *fg*

Mia



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]