matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisBerechnung von Bezierkurven
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Berechnung von Bezierkurven
Berechnung von Bezierkurven < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechnung von Bezierkurven: Frage
Status: (Frage) beantwortet Status 
Datum: 12:05 Fr 05.08.2005
Autor: hupfdule

Hallo,

ich habe folgendes Problem. Ich habe eine gegebene Funktion [mm]\bruch {2}{x}[/mm]. Diese möchte ich in einem Java2D Shape-Objekt darstellen (ist für die Beantwortung der Frage nicht relevant, nur zur Info).
Problem dabei ist, dass ich dieses Shape-Objekt nur in Form einer Bezierkurve darstellen kann, also 2 Punkte + ein Kontrollpunkt.

Leider habe ich davon herzlich wenig Ahnung. Was ich ungefähr weiß ist, dass der Kontrollpunkt der Punkt sein soll, an dem sich zwei Tangenten der Ableitung der Funktion kreuzen. Ist das so weit korrekt?

Also die Ableitung o.g. Funktion wäre [mm] \bruch {-2} {x^2}[/mm]. Nur wie errechne ich jetzt die Tangenten? Ist es dabei für die Berechnung des Kontrollpunktes relevant, welche Tangenten (also die Tangenten an welchen Punkten) ich dafür verwende?

Gruß
Marco

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Berechnung von Bezierkurven: Vorgehensweise
Status: (Antwort) fertig Status 
Datum: 20:27 Fr 05.08.2005
Autor: MathePower

Hallo hupfdule,

[willkommenmr]

> Hallo,
>  
> ich habe folgendes Problem. Ich habe eine gegebene Funktion
> [mm]\bruch {2}{x}[/mm]. Diese möchte ich in einem Java2D
> Shape-Objekt darstellen (ist für die Beantwortung der Frage
> nicht relevant, nur zur Info).
>  Problem dabei ist, dass ich dieses Shape-Objekt nur in
> Form einer Bezierkurve darstellen kann, also 2 Punkte + ein
> Kontrollpunkt.


Die allgemeine Form einer Bezierkurve 2. ten Grades lautet:

[mm]B_{2} \left( t \right)\; = \;b_{0} \;\left( {1\; - \;t} \right)^{2} \; + \;b_{1} \;2\;t\;\left( {1\; - \;t} \right)\; + \;b_{2} \;t^{2}[/mm]


Ich nehme an, mit den 2 Punkten sind Anfangs- und Endpunkt eines Intervalles gemeint.

Hier lassen sich dann die Kontrollpunkte [mm]b_{0}[/mm] und [mm]b_{2}[/mm] leicht bestimmen. Den Kontrollpunkt [mm]b_{0}[/mm] erhält man für den Parameter [mm]t\;=\;0[/mm]. Ebenso erhält man den Kontrollpunkt [mm]b_{2}[/mm] man für den Parameter [mm]t\;=\;1[/mm].

Der Kontrollpunkt [mm]b_{0}[/mm] ist hierbei der Anfangspunkt eines Intervalles, während der Kontrollpunkt [mm]b_{2}[/mm] der Endpunkt eines Intervalles ist.

>  
> Leider habe ich davon herzlich wenig Ahnung. Was ich
> ungefähr weiß ist, dass der Kontrollpunkt der Punkt sein
> soll, an dem sich zwei Tangenten der Ableitung der Funktion
> kreuzen. Ist das so weit korrekt?

Das ist korrekt.

>  
> Also die Ableitung o.g. Funktion wäre [mm]\bruch {-2} {x^2}[/mm].  
> Nur wie errechne ich jetzt die Tangenten? Ist es dabei für
> die Berechnung des Kontrollpunktes relevant, welche
> Tangenten (also die Tangenten an welchen Punkten) ich dafür
> verwende?

Es verbleibt nur noch die Frage nach dem Kontrollpunkt [mm]b_{1}[/mm].
Diesen erhältst Du in dem Du zunächst die Tangentengleichungen an dem Anfangspunkt und Endpunkt aufstellst und diese zum Schnitt bringst.

In der Regel liegt der Kontrollpunkt [mm]b_{1}[/mm] in der Mitte eines Intervalles, also für den Parameter [mm]t\;=\;0,5[/mm].

Konkret heisst das, dass diese Gleichung zu lösen ist:

[mm] \left( {\begin{array}{*{20}c} {x_s } \\ {y_s } \\ \end{array} } \right)\; = \;B_2 \left( {\frac{1} {2}} \right)\; = \;b_0 \;\frac{1} {4}\; + \;b_1 \;\frac{1} {2}\; + \;b_2 \;\frac{1} {4} [/mm]

Gruß
MathePower




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]