matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Berechnung eines Limes
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Analysis des R1" - Berechnung eines Limes
Berechnung eines Limes < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechnung eines Limes: mit Logarithmus
Status: (Frage) beantwortet Status 
Datum: 15:45 Do 12.05.2016
Autor: mikexx

Aufgabe
Seien [mm] $2\leq e\leq [/mm] r$ und
[mm] $$a_{n,k}=2(e+1)^{2(n+k)-1},$$ [/mm]
[mm] $$b_{n,k}=2\cdot[ e+e^2+e^3+e^3(e+1)+e^3(e+1)^2+\ldots +e^3(e+1)^{2(n+k)-4}],$$ [/mm]
[mm] $$c_{n,k}=2\cdot [2(e+r)e(e+1)^{2(n+k)-4}+(2(n+k)-4)(e+r)(e+1)^{2(n+k)-5}],$$ [/mm]
[mm] $$d_{n,k}=2\cdot [(2(n+k)-3)(e+r+1)e^2(e+1)^{2(n+k)-4}].$$ [/mm]

Ich versuche,
$$
[mm] \lim_{k\to\infty}\limsup_{n\to\infty}\frac{1}{n}\log(a_{n,k}+b_{n,k}+c_{n,k}+d_{n,k})~~~(\star) [/mm]
$$
auszurechnen.

Nabend, zunächst habe ich das Argument des Logarithmus mal ausgeklammert:
$$
[mm] 2(e+1)^{2(n+k)-1}\cdot\left(1+\frac{e+e^2+e^3}{(e+1)^{2(n+k)-1}}+\frac{e^3}{(e+1)^{2(n+k) -2}}+\ldots+\frac{e^3}{(e+1)^{2(n+k)-5}}+\frac{(2(n+k) -3)(e+r+1)e^2}{(e+1)^{2(n+k)-5}}\right) [/mm]
$$

Für den Logarithmus bedeutet das, dass ich das als Summe von Logarithmen schreiben kann:
$$
[mm] \log(2(e+1)^{2(n+k)-1})+\log\left(\left(1+\frac{e+e^2+e^3}{(e+1)^{2(n+k)-1}}+\frac{e^3}{(e+1)^{2(n+k)-2}}+\ldots+\frac{e^3}{(e+1)^{2(n+k)-5}}+\frac{(2(n+k)-3)(e+r+1)e^2}{(e+1)^{2(n+k)-5}}\right)\right)\\ [/mm]
[mm] =\log(2)+(2(n+k)-1)\log(e+1)+\log\left(\left(1+\frac{e+e^2+e^3}{(e+1)^{2(n+k)-1}}+\frac{e^3}{(e+1)^{2(n+k)-2}}+\ldots+\frac{e^3}{(e+1)^{2(n+k)-5}}+\frac{(2(n+k)-3)(e+r+1)e^2}{(e+1)^{2(n+k)-5}}\right)\right) [/mm]
$$
Wenn ich nun [mm] $(\star)$ [/mm] berechne, werden die ersten beiden Summanden zu [mm] $2\log(e+1)$. [/mm]

Beim dritten Summanden würde ich meinen, dass für fixiertes $k$ gilt, dass
$$
[mm] \limsup_{n\to\infty}\frac{1}{n}\log\left(\left(1+\frac{e+e^2+e^3}{(e+1)^{2(n+k)-1}}+\frac{e^3}{(e+1)^{2(n+k)-2}}+\ldots+\frac{e^3}{(e+1)^{2(n+k)-5}}+\frac{(2(n+k)-3)(e+r+1)e^2}{(e+1)^{2(n+k)-5}}\right)\right)=0, [/mm]
$$
denn wenn man den Limes [mm] $n\to+\infty$ [/mm] in das Argument des Logarithmus zieht (was wegen der Stetigkeit des Logarithmus auf [mm] $\mathbb{R}_+$ [/mm] geht), müssten alle Summanden bis auf die 1 gegen 0 konvergieren.

Mein Ergebnis für [mm] $(\star)$ [/mm] ist also [mm] $2\log(e+1)$. [/mm]


Ich wüsste gerne, ob ich richtig liege.



Viele Grüße von mir!

        
Bezug
Berechnung eines Limes: Antwort
Status: (Antwort) fertig Status 
Datum: 17:59 Do 12.05.2016
Autor: fred97


> Seien [mm]2\leq e\leq r[/mm] und
>  [mm]a_{n,k}=2(e+1)^{2(n+k)-1},[/mm]
>  [mm]b_{n,k}=2\cdot[ e+e^2+e^3+e^3(e+1)+e^3(e+1)^2+\ldots +e^3(e+1)^{2(n+k)-4}],[/mm]
>  
> [mm]c_{n,k}=2\cdot [2(e+r)e(e+1)^{2(n+k)-4}+(2(n+k)-4)(e+r)(e+1)^{2(n+k)-5}],[/mm]
>  
> [mm]d_{n,k}=2\cdot [(2(n+k)-3)(e+r+1)e^2(e+1)^{2(n+k)-4}].[/mm]
>  
> Ich versuche,
> [mm][/mm]
>  
> [mm]\lim_{k\to\infty}\limsup_{n\to\infty}\frac{1}{n}\log(a_{n,k}+b_{n,k}+c_{n,k}+d_{n,k})~~~(\star)[/mm]
> [mm][/mm]
>  auszurechnen.
>  Nabend, zunächst habe ich das Argument des Logarithmus
> mal ausgeklammert:
> [mm][/mm]
>  
> [mm]2(e+1)^{2(n+k)-1}\cdot\left(1+\frac{e+e^2+e^3}{(e+1)^{2(n+k)-1}}+\frac{e^3}{(e+1)^{2(n+k) -2}}+\ldots+\frac{e^3}{(e+1)^{2(n+k)-5}}+\frac{(2(n+k) -3)(e+r+1)e^2}{(e+1)^{2(n+k)-5}}\right)[/mm]
> [mm][/mm]
>  
> Für den Logarithmus bedeutet das, dass ich das als Summe
> von Logarithmen schreiben kann:
> [mm][/mm]
>  
> [mm]\log(2(e+1)^{2(n+k)-1})+\log\left(\left(1+\frac{e+e^2+e^3}{(e+1)^{2(n+k)-1}}+\frac{e^3}{(e+1)^{2(n+k)-2}}+\ldots+\frac{e^3}{(e+1)^{2(n+k)-5}}+\frac{(2(n+k)-3)(e+r+1)e^2}{(e+1)^{2(n+k)-5}}\right)\right)\\[/mm]
>  
> [mm]=\log(2)+(2(n+k)-1)\log(e+1)+\log\left(\left(1+\frac{e+e^2+e^3}{(e+1)^{2(n+k)-1}}+\frac{e^3}{(e+1)^{2(n+k)-2}}+\ldots+\frac{e^3}{(e+1)^{2(n+k)-5}}+\frac{(2(n+k)-3)(e+r+1)e^2}{(e+1)^{2(n+k)-5}}\right)\right)[/mm]
> [mm][/mm]
>  Wenn ich nun [mm](\star)[/mm] berechne, werden die ersten beiden
> Summanden zu [mm]2\log(e+1)[/mm].
>  
> Beim dritten Summanden würde ich meinen, dass für
> fixiertes [mm]k[/mm] gilt, dass
> [mm][/mm]
>  
> [mm]\limsup_{n\to\infty}\frac{1}{n}\log\left(\left(1+\frac{e+e^2+e^3}{(e+1)^{2(n+k)-1}}+\frac{e^3}{(e+1)^{2(n+k)-2}}+\ldots+\frac{e^3}{(e+1)^{2(n+k)-5}}+\frac{(2(n+k)-3)(e+r+1)e^2}{(e+1)^{2(n+k)-5}}\right)\right)=0,[/mm]
> [mm][/mm]
>  denn wenn man den Limes [mm]n\to+\infty[/mm] in das Argument des
> Logarithmus zieht (was wegen der Stetigkeit des Logarithmus
> auf [mm]\mathbb{R}_+[/mm] geht), müssten alle Summanden bis auf die
> 1 gegen 0 konvergieren.
>  
> Mein Ergebnis für [mm](\star)[/mm] ist also [mm]2\log(e+1)[/mm].
>  
>
> Ich wüsste gerne, ob ich richtig liege.

Ich fürchte, dass Du nicht richtig liegst.

Bei

[mm] \frac{1}{n}\log\left(\left(1+\frac{e+e^2+e^3}{(e+1)^{2(n+k)-1}}+\frac{e^3}{(e+1)^{2(n+k)-2}}+\ldots+\frac{e^3}{(e+1)^{2(n+k)-5}}+\frac{(2(n+k)-3)(e+r+1)e^2}{(e+1)^{2(n+k)-5}}\right)\right) [/mm]

Wächst mit n die Anzahl der Summanden im Logarithmus. Ich denke Du hast folgende Regel benutzt:

Sind [mm] (a^{(1)}_n),...., (a^{(m)}_n) [/mm]  m konvergente Folgen mit den Grenzwerten [mm] a^{(1)},..., a^{(m)}, [/mm] so gilt

[mm] a^{(1)}_n+....+ a^{(m)}_n \to a^{(1)}+....+ a^{(m)} [/mm]  für n [mm] \to \infty. [/mm]

In dieser Regel ist m allerdings fest, also unabhängig von n. Das ist aber bei Deiner obigen Folge nicht der Fall.


>  
>
>
> Viele Grüße von mir!

Von mir auch.

FRED


Bezug
                
Bezug
Berechnung eines Limes: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:30 Do 12.05.2016
Autor: mikexx

Du hast Recht, ich habe wirklich nicht beachtet, dass die Anzahl der Summanden bei fixiertem k und wachsendem n zunimmt...

Kann man das dennoch irgendwie ausrechnen oder ist jede Hoffnung verloren?

Bezug
                        
Bezug
Berechnung eines Limes: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:21 Sa 14.05.2016
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]