matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungBerechnung des Integrals
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integralrechnung" - Berechnung des Integrals
Berechnung des Integrals < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechnung des Integrals: benötige Hilfe beim lösen
Status: (Frage) beantwortet Status 
Datum: 20:36 Mi 30.04.2008
Autor: charlieM

Aufgabe
1) Berechnen Sie [mm] \integral\wurzel[3]{\bruch{x}{4}-1dx}. [/mm]

2) Berechnen Sie [mm] \integral\wurzel{1+e^x}dx. [/mm] Hinweis: Führen Sie die Substitution u = [mm] \wurzel{e^x+1} [/mm] durch. Dann bleibt Überschaubares zu tun übrig.

Hallo,

habe so meine Probleme mit diesen beiden Integralen, weiss nicht wirklich wie ich Anfangen soll bzw. wie man diese Aufgaben löst, deswegen wäre ich für jede Hilfestellung oder Lösung Dankbar.

Hoffe mir hilft jemand von euch dabei, würde mich wirklich freuen :).

Gruß

Charlie

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Berechnung des Integrals: Antwort
Status: (Antwort) fertig Status 
Datum: 21:24 Mi 30.04.2008
Autor: schachuzipus

Hallo Charlie,

erst einmal herzlich [willkommenmr]

wir erwarten eigentlich ein gewisses, wenn auch nur eher kleines Maß an Eigeninitiative beim Lösen von Aufgaben.

Wie sehen denn deine Ansätze aus?

Du sagst, du weißt nicht, wie du anfangen sollst, aber bei der (b) ist es dir doch schon als Tipp "vorgesagt" ;-)

Einfach mal ansetzen!

Ich nehme an, dir ist die Integration per Substitution bekannt...

Also mit dem Tipp bei der (b) ist

[mm] $u=\sqrt{e^x+1}$, [/mm] also

[mm] $u^2=e^x+1\Rightarrow x=\ln(u^2-1)=\ln\left[(u+1)(u-1)\right]=\ln(u+1)+\ln(u-1)$ [/mm]

Damit ist [mm] $x'=\frac{dx}{du}=\frac{1}{u+1}+\frac{1}{u-1}$, [/mm] also [mm] $\red{dx=\left(\frac{1}{u+1}+\frac{1}{u-1}\right) \ du}$ [/mm]

Das mal alles einsetzen:

[mm] $\int{\sqrt{e^x+1} \ \red{dx}}=\int{u \ \red{\left(\frac{1}{u+1}+\frac{1}{u-1}\right) \ du}}$ [/mm]

[mm] $=\int{\left(\frac{u}{u+1}+\frac{u}{u-1}\right) \ du}=\int{\left(\frac{u\red{+1-1}}{u+1}+\frac{u\red{-1+1}}{u-1}\right) \ du}=\int{\left(1-\frac{1}{u+1}+1+\frac{1}{u-1}\right) \ du}$ [/mm]

[mm] $=\int{2 \ du}-\int{\frac{1}{u+1} \ du}+\int{\frac{1}{u-1} \ du}$ [/mm]

Und das kannst du ja im Schlaf berechnen...

Wenn du fertig bist, das Rücksubstituieren nicht vergessen ;-)


Beim Integral in der ersten Aufgabe hilft dir auch eine Substitution, versuche [mm] $u:=\frac{x}{4}-1$ [/mm]


Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]