matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisBerechnen von Re und Im
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Komplexe Analysis" - Berechnen von Re und Im
Berechnen von Re und Im < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechnen von Re und Im: Richtig so ?
Status: (Frage) beantwortet Status 
Datum: 23:54 Mi 20.04.2005
Autor: DeusRa

Wieder ne kleine Aufgabe.....

Betrachten Sie die Abb. f: [mm] \IC \Rightarrow \IC [/mm] mit f(z):=z². Setzen Sie z=x+iy mit x,y [mm] \in \IR. [/mm]
a) Bestimmen Sie Re(f(z)) und Im(f(z)).

Habe es gemacht:
Bei mir kommt für Re(f(z))=x²+y² und für Im(f(z))=2xy raus.
Nur jedoch erscheint mir das viel zu einfach.
Ist das denn richtig ?

        
Bezug
Berechnen von Re und Im: Antwort
Status: (Antwort) fertig Status 
Datum: 00:49 Do 21.04.2005
Autor: Marcel

Hallo DeusRa!

> Wieder ne kleine Aufgabe.....
>  
> Betrachten Sie die Abb. f: [mm]\IC \Rightarrow \IC[/mm] mit
> f(z):=z². Setzen Sie z=x+iy mit x,y [mm]\in \IR.[/mm]
>  a) Bestimmen
> Sie Re(f(z)) und Im(f(z)).
>  
> Habe es gemacht:
>  Bei mir kommt für Re(f(z))=x²+y² und für Im(f(z))=2xy
> raus.
>  Nur jedoch erscheint mir das viel zu einfach.
>  Ist das denn richtig ?

Nein, leider stimmt dein Realteil nicht. Es gilt doch:
[mm] $f(z)=z^2=(x+iy)^2=x^2+2x*(iy)+(iy)^2=x^2+i^2y^2+i*2xy=\underbrace{x^2-y^2}_{=\mbox{Re}f(z)}+i*\underbrace{2xy}_{=\mbox{Im}f(z)}$ [/mm]

Also [mm] $\mbox{Re}f(z)=x^2-y^2$. [/mm] Dein Imaginärteil stimmt aber :-)! Alles klar?

Viele Grüße,
Marcel

Bezug
        
Bezug
Berechnen von Re und Im: ZT Nebenergebnis
Status: (Antwort) fertig Status 
Datum: 13:23 Fr 22.04.2005
Autor: FriedrichLaher

Hallo, DeusRa   (  ??? Sonnengott ??  )

damit es nicht so einfach ist

- was folgt daraus wenn $(x [mm] \in \IN) \wedge [/mm] (y  x [mm] \in \IN)$ [/mm] gilt und man auch noch

   $| [mm] z^2 [/mm] |$ in Betracht zieht ?

Gruß F.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]