matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-FinanzmathematikBer.eff.Jahreszins bei Leasing
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Finanzmathematik" - Ber.eff.Jahreszins bei Leasing
Ber.eff.Jahreszins bei Leasing < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ber.eff.Jahreszins bei Leasing: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:16 Sa 07.01.2006
Autor: Susanni

Ich habe folgendes Problem:
Ich möchte verschiedene Leasingangebote
vergleichen in dem ich den effektiven Jahreszins des Kreditanteil des
Angebotes berechne.
Folgendes Prinzip: Eine Ware hat einen Listenpreis LP.
Dieses Teil wird geleast.
Hier gibt es folgende unterschiedliche Werte: Anzahlung AZ , Rate R , Laufzeit in Monaten
LZ , Restwert RW.

Die Gesamtkosten GK berechnen sich: GK = AZ + (R x LZ) + RW.
Die Frage ist, wie berechnet man den
effektiven Jahreszins des als Kredit finanzierten Teiles des
Angebotes um verschiedene Angebote vergleichen zu können ?
Hat dazu jemand eine gute Idee ?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ber.eff.Jahreszins bei Leasing: Tipp
Status: (Antwort) fertig Status 
Datum: 15:13 Fr 13.01.2006
Autor: Josef

Hallo Susanni,

> Ich möchte verschiedene Leasingangebote
>  vergleichen in dem ich den effektiven Jahreszins des
> Kreditanteil des
>  Angebotes berechne.
> Folgendes Prinzip: Eine Ware hat einen Listenpreis LP.
> Dieses Teil wird geleast.
> Hier gibt es folgende unterschiedliche Werte: Anzahlung AZ
> , Rate R , Laufzeit in Monaten
>  LZ , Restwert RW.
>  
> Die Gesamtkosten GK berechnen sich: GK = AZ + (R x LZ) +
> RW.
> Die Frage ist, wie berechnet man den
>  effektiven Jahreszins des als Kredit finanzierten Teiles
> des
>  Angebotes um verschiedene Angebote vergleichen zu können ?
> Hat dazu jemand eine gute Idee ?
>  

Ich würde hierbei die Formel für die Effektivverzinsung von Ratenkrediten anwenden. Mit deinen Bezeichnungen lautet diese:

[mm] (GK-AZ)*q^{LZ} [/mm] - R*[mm]\bruch{q^{LZ} -1}{q-1}[/mm] = RW

mit der Lösung q

woraus wegen [mm] 1+i_{eff} [/mm] = [mm] q^{12} [/mm] und [mm] i_{eff} [/mm] = % p.a.



Zur Lösung dieser Gleichung muss ein (iteratives) Näherungsverfahren, z.B.  die Regula falsi, benutzt werden.



Bezug
                
Bezug
Ber.eff.Jahreszins bei Leasing: Antwort nicht verstanden...
Status: (Frage) beantwortet Status 
Datum: 07:29 So 10.05.2009
Autor: Susanni

Hallo Josef,
ich hatte damals Deine Antwort nicht verstanden.
Nun sind drei Jahre um und das Problem liegt erneut auf meinem Tisch.
Kannst Du Deine niedergeschriebenen Formeln so erklären das man sie z.B. mit Excel oder VB benutzen kann ?
Schöne Grüße
Susanni

Bezug
                        
Bezug
Ber.eff.Jahreszins bei Leasing: Antwort
Status: (Antwort) fertig Status 
Datum: 15:35 So 10.05.2009
Autor: Josef

Hallo Susannie,


>  ich hatte damals Deine Antwort nicht verstanden.
>  Nun sind drei Jahre um und das Problem liegt erneut auf
> meinem Tisch.
>  Kannst Du Deine niedergeschriebenen Formeln so erklären
> das man sie z.B. mit Excel oder VB benutzen kann ?



Ein Beispiel für die Berechnung des effektiven Jahreszinses:

Für einen neune Personalcomputer sind 1.559 € zu zahlen. Der Händler bietet einen Teilzahlungskredit an, der in 36 monatlichen Raten a 49 € zurückzuzahlen ist. Wie hoch isrt der effektive Jahrszins?

Die monatlichen Raten enthalten Tilgungs, Zins- und Kostenbestandteile. Aussagen zur Zusammensetzung dieser Anteile, insbesondere zur Höhe und Art der nomienllen Verzinsung fehlen bei dieser Art von Ratenkreditgeschäften, erübrigen sich allerdings bei Angabe des effektiven Jahreszinses.

Exel-Formel:



Meine Excel-Tabelle enthält in Spalte B ab Zeile 13 alle Ratenzahlungen. Deren Wert wind in Zeile B13 (Monat 1, Zahlungsreihe -49,00) mit dem richtigen Vorzeichen (hier minus wegen Auszahlung) eingetragen und mit der Formel =$B$3 (Zeile 3 = 1.559,00) in Zelle B14 übernommen. Damit die Reihe am Ende der Lauzeit automatisch abbricht, sind Prüfbedingungen wie folgt einzubauen:

Zeille 14
=WENN(A13<  Dollarzeichen B Dollarzeichen 6;A13+1;"")

für $6 = Laufzeit 36 Monate

Ergebnis 2

Zelle 14
=WENN(A14="","";§B§13)

Ergebnis -49,00

Zelle 12
=WENN(B3="";-B4;B3)

Ergebnis 1.599,00


Die Zellen A14 und B14 sind zu markieren und bis zur letzten Zeile zu kopieren. Da diese Tabelle für Investitionen und Finazierungen ausgelegt sein soll, sieht sie getrennte Eingabezellen für Anfangseinzahlungen (B13 und Anfangsauszahlungen(B14) vor. Dieser Wert muss der Zahlungfsreihe für die monatlichen Raten mit dem richtigen Vorzeichen als zeitlich erster Wert in Zelle B12 hinzugefügt werden.

B 12 = 1.559,00


Zu beachen ist, dass sich der so berechnete Zinssatz auf die Zahlungsperiode bezieht, also einen unterjährigen konformen Zinssatz darstellt, der in einen Jahreszinssatz umzurechnen ist.

Ergebnis = [mm] (1+0,00684)^{12}-1 [/mm] = 8,52 %
Esxcel-Formel: =(1+C8)^B5-1

B5 = 12


Viele Grüße
Josef


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]