matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStatistik/HypothesentestsBeispiel von Wikipedia
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Statistik/Hypothesentests" - Beispiel von Wikipedia
Beispiel von Wikipedia < Statistik/Hypothesen < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik/Hypothesentests"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beispiel von Wikipedia: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:57 Mo 29.11.2010
Autor: domerich

Aufgabe
http://de.wikibooks.org/wiki/Mathematik:_Statistik:_Hypothesentests



ich kapiere nicht das beispiel x(

ab "standardisiert man mit [mm] Z=\bruch{X-\mu}{\wurzel{\sigma^2/n}} [/mm]

wie kommt man denn auf das Intervall [-1,96; 1,96] ?

Z habe ich mit -0,5 ausgerechnet... klein z sind die neuen grenzen des tolleranzintervalls von [mm] \pm [/mm] 5% wie ich das sehe

        
Bezug
Beispiel von Wikipedia: Antwort
Status: (Antwort) fertig Status 
Datum: 02:29 Di 30.11.2010
Autor: Walde

Hi domerich,

> http://de.wikibooks.org/wiki/Mathematik:_Statistik:_Hypothesentests
>  
> ich kapiere nicht das beispiel x(
>  
> ab "standardisiert man mit
> [mm]Z=\bruch{X-\mu}{\wurzel{sigma^2/n}}[/mm]
>  
> wie kommt man denn auf das Intervall [-1,96; 1,96] ?
>
> Z habe ich mit -0,5 ausgerechnet...

ich weiss nicht genau, was du damit meinst

> klein z sind die neuen
> grenzen des tolleranzintervalls von [mm]\pm[/mm] 5% wie ich das sehe

Nein, man sucht doch [mm] z_u [/mm] und [mm] z_o [/mm] mit [mm] P(z_u\le Z\le z_o)=0,95 [/mm] also ein Intervall, indem mit 95%iger W'keit die Zufallsvariable Z lieg und Z ist eine standardnormalverteilte ZV. Auf die Grenzen des Intevalls kommt man so:
Es gilt:
[mm] P(z_u\le Z\le z_o)=P(-z_o\le Z\le z_o), [/mm] da die Dichte der Std.nrm.vert. symmetrisch zum Erwartungswert 0 ist.
[mm] =P(Z\le z_o)-P(Z\le-z_o)=P(Z\le z_o)-(1-P(Z\le z_o)), [/mm] wieder aus Symmetriegründen.
[mm] =2P(Z\le z_o)-1 [/mm]

und es soll gelten:
[mm] 2P(Z\le z_o)-1=0,95 [/mm]
[mm] \gdw P(Z\le z_o)=0,975 [/mm]
und da kuckt man in einer W'keitstabelle nach (gibts auch bei Wikipedia) und kommt auf [mm] z_0=1,96. [/mm]

LG walde

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik/Hypothesentests"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]