matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Beide Ausdrücke Äquivalent?
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Mathe Klassen 8-10" - Beide Ausdrücke Äquivalent?
Beide Ausdrücke Äquivalent? < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beide Ausdrücke Äquivalent?: Richtig umgeformt?
Status: (Frage) beantwortet Status 
Datum: 21:36 Di 15.06.2010
Autor: jumper

Aufgabe
Stimmt folgende Umformung?
[mm] 1-\bruch{1}{n+1}+\bruch{1}{(n+1)(n+2)}=1-\bruch{(n+2)+1}{(n+1)*(n+2))} [/mm]

Gruß jumper

        
Bezug
Beide Ausdrücke Äquivalent?: Antwort
Status: (Antwort) fertig Status 
Datum: 21:38 Di 15.06.2010
Autor: wieschoo


> Stimmt folgende Umformung?
>  
> [mm]1-\bruch{1}{n+1}+\bruch{1}{(n+1)(n+2)}=1-\bruch{(n+2)+1}{(n+1)*(n+2))}[/mm]

Erweitere einfach den zweiten Bruch
[mm]1-\bruch{1\red{(n+2)}}{(n+1)\red{(n+2)}}+\bruch{1}{(n+1)(n+2)}=\ldots[/mm]

(Edit: hab jetzt die rechte Seite vom = gelöscht)


>  Gruß jumper


Bezug
                
Bezug
Beide Ausdrücke Äquivalent?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:51 Di 15.06.2010
Autor: jumper

In der Lösung stht aber : [mm] 1-\bruch{n+1}{(n+1)*(n+2)} [/mm] und ich komme nicht drauf!

Gruß Jumper



Bezug
                        
Bezug
Beide Ausdrücke Äquivalent?: Antwort
Status: (Antwort) fertig Status 
Datum: 22:11 Di 15.06.2010
Autor: leduart

Hallo
du musst reichtig auf den HN bringen.
achte auf die Vorzeichen:
$ [mm] 1-\bruch{1\red{(n+2)}}{(n+1)\red{(n+2)}}+\bruch{1}{(n+1)(n+2)}=1-\bruch{(n+2)-11}{(n+1)\cdot{}(n+2)} [/mm] $
das -1 wird aus dem + 1 in [mm] \bruch{1}{(n+1)} [/mm] weil ja vor dem Gesamtbruch ein - steht .
Gruss leduart

Bezug
                
Bezug
Beide Ausdrücke Äquivalent?: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 22:06 Di 15.06.2010
Autor: leduart

Hallo
ds Zusammenfassen ist falsch.
Gruss leduart

Bezug
                        
Bezug
Beide Ausdrücke Äquivalent?: Korrekturmitteilung
Status: (Korrektur) oberflächlich richtig Status 
Datum: 22:35 Mi 16.06.2010
Autor: wieschoo


> Hallo
>  ds Zusammenfassen ist falsch.
>  Gruss leduart


natürlich. [anbet] Hab ich übersehen und blind den LateX-Code vom vorherigen Post kopiert. Also
$ [mm] 1-\bruch{1\red{(n+2)}}{(n+1)\red{(n+2)}}+\bruch{1}{(n+1)(n+2)}=\ldots$ [/mm]

jaja...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]