matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungBegrenztes Wachstum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Differenzialrechnung" - Begrenztes Wachstum
Begrenztes Wachstum < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Begrenztes Wachstum: Ich habe leider keine Idee
Status: (Frage) beantwortet Status 
Datum: 12:11 Do 15.01.2015
Autor: wolfgangmax

Aufgabe
<br>
In einer Stadt gibt es 40.000 Haushalte, von denen nach Meinungsumfragen etwa jeder Fünfte den Kauf eines neu auf dem Markt gebrachten Haushaltsartikels in Frage kommt. Es ist damit zu rechnen, dass der Absatz des Artikel im Laufe der Zeit zunehmend schwieriger wird. In den ersten 3 Monaten werden 1.700 Stück des Artikels verkauft.
Der Hersteller geht davon aus, dass innerhalb eines Jahres mindestens 5.500 Stück verkauft werden können.
Überprüfen Sie diese Annahme!


<br>
Mein Ansatz:
die Formeln: f ' (x)= k(G - f(x))
             f(x)   = (A - G)e^(-kx)+ G

G - 1/5 aller Haushalte = 40.000/5 = 8000
k= 0,2 (nämlich 1/5)
A - f(0) = 0

Wie setze ich die Aussage: "... In den ersten 3 Monaten werden 1700 Stück verkauft" ?

Meine Vermutung: für f' setze ich 1700,
dann erhalte ich:

1700 = 0,2 (8000 - f(x))

Ich rechne weiter:
1700 = 0,2(8000 - f(x))
1700 = 1600 - 0,2f(x)
1700 - 1600 = -0,2 f(x)
100  = -0,2 f(x)
f(x) = -500

Dieses Ergebnis ergibt doch keinen Sinn, außerdem habe ich doch die Zeitangabe 3 Monate gar nicht berücksicht.

An dieser Stelle höre ich zu rechnen auf und würde mich freuen, wenn ich von euch einen Tipp bekommen könnte, wie der richtige Lösungsansatz lautet.

LG
wolfgangmax
 

        
Bezug
Begrenztes Wachstum: Bdeutung der Variablen ?
Status: (Antwort) fertig Status 
Datum: 12:56 Do 15.01.2015
Autor: Al-Chwarizmi


>  In einer Stadt gibt es 40.000 Haushalte, von denen nach
> Meinungsumfragen etwa jeder Fünfte den Kauf eines neu auf
> dem Markt gebrachten Haushaltsartikels in Frage kommt. Es
> ist damit zu rechnen, dass der Absatz des Artikel im Laufe
> der Zeit zunehmend schwieriger wird. In den ersten 3
> Monaten werden 1.700 Stück des Artikels verkauft.
>  Der Hersteller geht davon aus, dass innerhalb eines Jahres
> mindestens 5.500 Stück verkauft werden können.
>  Überprüfen Sie diese Annahme!
>  
>  Mein Ansatz:
>  die Formeln: f ' (x)= k(G - f(x))
>               f(x)   = (A - G)e^(-kx)+ G
>  
> G =   1/5 aller Haushalte = 40.000/5 = 8000    [ok]
>  k= 0,2 (nämlich 1/5)  [haee]   [kopfschuettel]  
>  A = f(0) = 0   [ok]

  

> Wie setze ich die Aussage: "... In den ersten 3 Monaten
> werden 1700 Stück verkauft" ?

  

> Meine Vermutung: für f' setze ich 1700,   [haee]

(einfach mal so auf gut Glück einen der gegebenen
Zahlenwerte in eine der vielleicht in Frage kommenden
Formeln einsetzen ??
Das ist eine denkbar schlechte Vorgehensweise ...)

>  dann erhalte ich:
>  
> 1700 = 0,2 (8000 - f(x))
>  
> Ich rechne weiter:
>  1700 = 0,2(8000 - f(x))
>  1700 = 1600 - 0,2f(x)
>  1700 - 1600 = -0,2 f(x)
>  100  = -0,2 f(x)
>  f(x) = -500
>  
> Dieses Ergebnis ergibt doch keinen Sinn, außerdem habe ich
> doch die Zeitangabe 3 Monate gar nicht berücksicht.
>  
> An dieser Stelle höre ich zu rechnen auf und würde mich
> freuen, wenn ich von euch einen Tipp bekommen könnte, wie
> der richtige Lösungsansatz lautet.
>  
> LG
>  wolfgangmax


Hallo wolfgangmax,

in erster Linie musst du dir klar machen, wofür denn die
Variablen und Konstanten und die Funktion f genau stehen
sollen.

x = verstrichene Zeit ab Markteinführung, gemessen (z.B.) in Monaten

f(x) = Anzahl der innert der Zeitspanne x verkauften Stück

G = [mm] $\limes_{x\to\infty}f(x)$ [/mm]

(wobei eine logistische Verkaufskurve nach dem angenommenen
mathematischen Modell angenommen wird)

k  ist eine Konstante, die geeignet angepasst werden muss,
um den vorliegenden Daten gerecht zu werden.

Du solltest dich dann also um die Bestimmung des Wertes
von k kümmern, der nix mit dem Wert 1/5 aus der
Aufgabenstellung zu tun hat !

LG  ,   Al-Chwarizmi  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]