matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenBedingungen für Sattelpunkt
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Funktionen" - Bedingungen für Sattelpunkt
Bedingungen für Sattelpunkt < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bedingungen für Sattelpunkt: Tipp, Korrektur
Status: (Frage) beantwortet Status 
Datum: 18:42 Do 10.01.2008
Autor: M4rc

Aufgabe
Gegeben ist die Funktion f mit f(x)=ax³+bx²+cx+d
Welche Bedingungen müssen a,b,c,d [mm] \in \IR [/mm] erfüllen, damit der Graph f einen Sattelpunkt enthält, der auf der x-Achse Liegt?

Für einen Sattelpunkt auf der x Achse muss d in jedem Fall gleich null sein da d der Ordinaten abschnitt ist.

die erste sowie die 2 te Ableitung der Funktion müssen nach den bdg. für einen Sattelpunkt auch gleich 0 sein, auch die Funktion selbst muss für den Sattelpunkt gleich 0 sein weil dieser ja auf der x Achse liegt.

also:

ax³+bx²+cx=0
3ax²+2bx+c=o
6ax+2b=0

Beim lösen dieses Gleichungssystems komm ich immer nur darauf das abc=0 sind, was ja nun nicht wirklich sinn macht

Ist mein Ansatz Falsch, oder hab ich irgendwo einen denk Fehler gemacht?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Bedingungen für Sattelpunkt: Antwort
Status: (Antwort) fertig Status 
Datum: 19:00 Do 10.01.2008
Autor: Somebody


> Gegeben ist die Funktion f mit f(x)=ax³+bx²+cx+d
>  Welche Bedingungen müssen a,b,c,d [mm]\in \IR[/mm] erfüllen, damit
> der Graph f einen Sattelpunkt enthält, der auf der x-Achse
> Liegt?
>  Für einen Sattelpunkt auf der x Achse muss d in jedem Fall
> gleich null sein da d der Ordinaten abschnitt ist.

Warum bist Du sicher, dass dieser $y$-Achsenabschnitt (Ordinatenabschnitt) gerade die $y$-Koordinate des Sattelpunktes sein muss?


>  
> die erste sowie die 2 te Ableitung der Funktion müssen nach
> den bdg. für einen Sattelpunkt auch gleich 0 sein, auch die
> Funktion selbst muss für den Sattelpunkt gleich 0 sein weil
> dieser ja auf der x Achse liegt.
>  
> also:
>  
> ax³+bx²+cx=0
>  3ax²+2bx+c=o
>  6ax+2b=0
>  
> Beim lösen dieses Gleichungssystems komm ich immer nur
> darauf das abc=0 sind, was ja nun nicht wirklich sinn
> macht
>  
> Ist mein Ansatz Falsch, oder hab ich irgendwo einen denk
> Fehler gemacht?

Ich glaube nicht, dass Du annehmen darfst, dass $d=0$ ist, weil die $x$-Koordinate des Sattelpunktes nicht notwendigerweise $0$ sein muss.

Ich würde an Deiner Stelle damit beginnen festzustellen, dass jedenfalls [mm] $a\neq [/mm] 0$ sein muss: andernfalls wäre die Polynomfunktion von zu kleinem Grad, als dass sie einen Sattelpunkt besitzen könnte.

Der Sattelpunkt muss mit dem einzigen Wendepunkt, den eine Polynomfunktion vom 3. Grad besitzen kann, zusammenfallen. Also folgt, aus $f''(x)=6ax+2b$, dass die $x$-Koordinate des Sattelpunktes gleich [mm] $x_S [/mm] := [mm] -\frac{2b}{6a}=-\frac{b}{3a}$ [/mm] sein muss.
Damit nun ein Sattelpunkt vorliegt, nicht etwa nur ein Wendepunkt, muss [mm] $f'(x_S)=0$ [/mm] sein. Zudem muss [mm] $f(x_S)=0$ [/mm] gelten, weil der Sattelpunkt auf der $x$-Achse liegen soll.
Durch Auflösen dieser beiden Gleichungen [mm] $f'(x_S)=0$ [/mm] und [mm] $f(x_S)=0$, [/mm] unter Verwendung von [mm] $a\neq\IR$ [/mm] und [mm] $b\in \IR$ [/mm] als freie Parameter, erhalte ich ein wesentlich anderes Ergebnis.

Bezug
                
Bezug
Bedingungen für Sattelpunkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:30 Do 10.01.2008
Autor: M4rc


> > Gegeben ist die Funktion f mit f(x)=ax³+bx²+cx+d
>  >  Welche Bedingungen müssen a,b,c,d [mm]\in \IR[/mm] erfüllen,
> damit
> > der Graph f einen Sattelpunkt enthält, der auf der x-Achse
> > Liegt?
>  >  Für einen Sattelpunkt auf der x Achse muss d in jedem
> Fall
> > gleich null sein da d der Ordinaten abschnitt ist.
>  
> Warum bist Du sicher, dass dieser [mm]y[/mm]-Achsenabschnitt
> (Ordinatenabschnitt) gerade die [mm]y[/mm]-Koordinate des
> Sattelpunktes sein muss?

Da hab ich mich in eine falsche Annahme verrannt.

>  
>
> >  

> > die erste sowie die 2 te Ableitung der Funktion müssen nach
> > den bdg. für einen Sattelpunkt auch gleich 0 sein, auch die
> > Funktion selbst muss für den Sattelpunkt gleich 0 sein weil
> > dieser ja auf der x Achse liegt.
>  >  
> > also:
>  >  
> > ax³+bx²+cx=0
>  >  3ax²+2bx+c=o
>  >  6ax+2b=0
>  >  
> > Beim lösen dieses Gleichungssystems komm ich immer nur
> > darauf das abc=0 sind, was ja nun nicht wirklich sinn
> > macht
>  >  
> > Ist mein Ansatz Falsch, oder hab ich irgendwo einen denk
> > Fehler gemacht?
>  
> Ich glaube nicht, dass Du annehmen darfst, dass [mm]d=0[/mm] ist,
> weil die [mm]x[/mm]-Koordinate des Sattelpunktes nicht
> notwendigerweise [mm]0[/mm] sein muss.
>  

Bei meiner falschen Annahme wäre der Sattelpunkt nicht nur auf der X-Achse sonder auch im Ursprung, Oder?

> Ich würde an Deiner Stelle damit beginnen festzustellen,
> dass jedenfalls [mm]a\neq 0[/mm] sein muss: andernfalls wäre die
> Polynomfunktion von zu kleinem Grad, als dass sie einen
> Sattelpunkt besitzen könnte.
>  
> Der Sattelpunkt muss mit dem einzigen Wendepunkt, den eine
> Polynomfunktion vom 3. Grad besitzen kann, zusammenfallen.
> Also folgt, aus [mm]f''(x)=6ax+2b[/mm], dass die [mm]x[/mm]-Koordinate des
> Sattelpunktes gleich [mm]x_S := -\frac{2b}{6a}=-\frac{b}{3a}[/mm]
> sein muss.
>  Damit nun ein Sattelpunkt vorliegt, nicht etwa nur ein
> Wendepunkt, muss [mm]f'(x_S)=0[/mm] sein. Zudem muss [mm]f(x_S)=0[/mm]
> gelten, weil der Sattelpunkt auf der [mm]x[/mm]-Achse liegen soll.
>   Durch Auflösen dieser beiden Gleichungen [mm]f'(x_S)=0[/mm] und
> [mm]f(x_S)=0[/mm], unter Verwendung von [mm]a\neq\IR[/mm] und [mm]b\in \IR[/mm] als
> freie Parameter

>, erhalte ich ein wesentlich anderes

> Ergebnis.

okay,

xs= b/3a hab ich nachvollzogen

jetzt setz ich das in f´und f ein

bekomme ich also:

b³/27a²+b³/27a²+cx+d = 2(b³/27a²)+cx+d =0

und

b²/9a+2b²/3a+c=0

dann hab ich 2 Gleichungen mit 4 variablen

>unter Verwendung von [mm]a\neq\IR[/mm] und [mm]b\in \IR[/mm] als

> freie Parameter

was mir das bringt bzw was ich hier mit anfangen soll, weiss ich gerade mal gar nicht und warum ist [mm] a\not\in\IR [/mm] dann heisst das doch da [mm] a=i=\wurzel{-1} [/mm]

vermutlich hab ich unrecht

Bezug
                        
Bezug
Bedingungen für Sattelpunkt: Antwort
Status: (Antwort) fertig Status 
Datum: 23:12 Do 10.01.2008
Autor: leduart

Hallo
1. somebody hatte sich verschrieben! er meinte natürlich nicht [mm] a\neR [/mm] sondern [mm] a\ne0! [/mm]
2. gibt es kein eindeutiges a,b,c ,d sondern nur einen Zusammenhang zwischen ihnen!
3. geht es auch anders:
du weisst dass [mm] x^3 [/mm] einen Sattelpunkt bei 0 hat. dann auch [mm] a*x^3. [/mm]
wenn ich den Sattelpunkt nicht bei (0,0) haben will, kann ich noch verschieben und habe [mm] y=a(x-e)^3 [/mm] mit dem Sattelpunkt bei x=b
Wenn du das ausmultiplizierst hast du auch Ausdrücke für a,b,c,d  
aber wie somebody es gezeigt hat, geht es auch schnell. nur bleibt natürlich kein x stehen du musst überall [mm] x_s [/mm] einsetzen.
ich denk dabei hast du noch Fehler gemacht.
[mm] f'=3ax^2+2bx+c [/mm]  eingesetzt x=-b/3a
[mm] b^2/3a-2b^2/3a+c=0 [/mm] ergibt [mm] c=b^2/2a [/mm]
jetzt noch in f einsetzen, da hast du auch nen Fehler, rechne nach! du kriegst dann d= nur noch a und b.
d.h. du kannst a und b frei wählen c und d folgen dann.
(bei mir kannst du a und e frei wählen)
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]