matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikBedingter Varianz 
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - Bedingter Varianz
Bedingter Varianz < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bedingter Varianz : Frage
Status: (Frage) beantwortet Status 
Datum: 15:56 Fr 26.08.2005
Autor: Jazzman

Hi!

..hab mal wieder ein Problem, dass wahrscheinlich ganz einfach zu lösen ist und ich mal wieder total auf dem Schlauch steh...
Es geht um folgende Umformung die ich nicht hinkrieg:

[mm] Var[E[L_{i}|P]]+E[Var[L_{i}|P]]=Var[P_{i}]+E[P_{i}(1-P_{i})] [/mm]

wobei [mm] E[L_{i}]=E[P_{i}] [/mm] und [mm] Var[L_{i}|P]=E[L_{i}^2|P]-E[L_{i}|P]^2 [/mm] und [mm] Var[E[L_{i}|P]]=E[E[L_{i}|P]^2]-E[L_{i}]^2 [/mm] ist.

Ich hoffe, ich hab keine Informationen vergessen und mir kann jemand weiterhelfen.
Vielen Dank im voraus....

        
Bezug
Bedingter Varianz : Was ist P_i?
Status: (Antwort) fertig Status 
Datum: 17:44 Fr 26.08.2005
Autor: Stefan

Hallo!

Da ich nicht weiß, was [mm] $P_i$ [/mm] genau ist (ich weiß nur, dass [mm] $E[P_i]=E[L]$, [/mm] nur nützt mir das nicht viel), kann ich nur mal anfangen zu rechnen:

[mm] $Var[E[L_i|P]] [/mm] + [mm] E[Var[L_i|P]]$ [/mm]

[mm] $=E[E[L_i|P]^2] [/mm] - [mm] (E[L_i])^2 [/mm] + [mm] E[E[L_i^2|P]-E[L_i|P]^2]$ [/mm]

[mm] $=E[E[L_i|P]^2] [/mm] - [mm] (E[L_i])^2 [/mm] + [mm] E[L_i^2]- E[E[L_i|P]^2]$ [/mm]

[mm] $=E[L_i^2] [/mm] - [mm] (E[L_i])^2$ [/mm]

[mm] $=Var[L_i]$ [/mm]

$= [mm] \ldots$ [/mm] (was ist [mm] $P_i$?) [/mm]

Viele Grüße
Stefan

Bezug
        
Bezug
Bedingter Varianz : Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:21 Sa 27.08.2005
Autor: Jazzman

Hallo Stefan!

also die [mm] L_{i} [/mm] sind Bernoullivariablen, die [mm] L_{i} [/mm]  ~  [mm] B(1;P_{i}) [/mm] verteilt sind.
[mm] P_{i} [/mm] sind zufallsvariablen für di gilt: [mm] P=(P_{1}, P_{2},...,P_{m}) [/mm] ~ F, wobei F irgendeine Verteilung im Intervall [0,1] ist.

Ich hoffe das hilft weiter??

Bezug
                
Bezug
Bedingter Varianz : Antwort
Status: (Antwort) fertig Status 
Datum: 15:26 Sa 27.08.2005
Autor: Stefan

Hallo Jazzman!

Okay, dann ist der Rest ja jetzt simpel:

[mm] $Var[L_i] [/mm] = [mm] E[L_i^2] -E[L_i]^2 [/mm] = [mm] E[P_i] [/mm] - [mm] E[P_i]^2 [/mm] = [mm] E[P_i^2] [/mm] - [mm] E[P_i]^2 [/mm] + [mm] E[P_i] [/mm] - [mm] E[P_i^2] [/mm] = [mm] Var[P_i] [/mm] + [mm] E[P_i(1-P_i)]$. [/mm]

Viele Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]