matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitsrechnungBedingte Wahrscheinlichkeit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Wahrscheinlichkeitsrechnung" - Bedingte Wahrscheinlichkeit
Bedingte Wahrscheinlichkeit < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bedingte Wahrscheinlichkeit: Krank / Test
Status: (Frage) beantwortet Status 
Datum: 16:29 Mi 04.11.2009
Autor: Kubs

Aufgabe

Über eine bestimmte Stoffwechselkrankheit is bekannt, dass sie ca. eine von 150 Personen befällt. Ein recht zuverlässiger Test fällt bei tatsächlich erkrankten Personen mit einer Wahrscheinlichkeit von 97% positiv aus. Bei Personen , die nicht krank sind, fällt er mit 95% Wahrscheinlichkeit negativ aus.
a)Jemand lässt sich testen und erhält ein positives Resultat. Mit welcher Wahrscheinlichketi ist er tatsächlich erkrankt?

b) Wie groß ist die Wahrscheinlichkeit, dass man bei einem negativen Ergebnis tatsächlich nicht krank ist?



Ich würde diese Aufgabe versuchen mit einem Baumdiagramm zu lösen.. die ersten 2Pfade sind dann erstmal krank und nicht krank...krank wäre dann 1/150 und nicht krank dann 149/150. dann bekommen die beiden ende noch jeweils 2pfade mit Test positiv und Test negativ. positiv wär bei den kranken dann 97% und negativ 3% und bei den erkrankten positiv 5% und negativ 95%...

ist mein Ansatz soweit richtig?? wie muss ich jetzt fortfahren??



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Bedingte Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 16:55 Mi 04.11.2009
Autor: Al-Chwarizmi

Hallo Kubs,

zuerst dachte ich bei der Überschrift "Krank/Test",
dass das eine Art Hilferuf sein könnte von der Art:
"Hilfe, ich war zwei Wochen krank und muss über-
morgen einen Mathetest schreiben !"




> Über eine bestimmte Stoffwechselkrankheit ist bekannt, dass
> sie ca. eine von 150 Personen befällt. Ein recht
> zuverlässiger Test fällt bei tatsächlich erkrankten
> Personen mit einer Wahrscheinlichkeit von 97% positiv aus.
> Bei Personen , die nicht krank sind, fällt er mit 95%
> Wahrscheinlichkeit negativ aus.
>  a) Jemand lässt sich testen und erhält ein positives
> Resultat. Mit welcher Wahrscheinlichkeit ist er
> tatsächlich erkrankt?
>  
> b) Wie groß ist die Wahrscheinlichkeit, dass man bei einem
> negativen Ergebnis tatsächlich nicht krank ist?
>  
>
>
> Ich würde diese Aufgabe versuchen mit einem Baumdiagramm
> zu lösen.. die ersten 2Pfade sind dann erstmal krank und
> nicht krank...krank wäre dann 1/150 und nicht krank dann
> 149/150. dann bekommen die beiden ende noch jeweils 2pfade
> mit Test positiv und Test negativ. positiv wär bei den
> kranken dann 97% und negativ 3% und bei den erkrankten
> positiv 5% und negativ 95%...
>  ist mein Ansatz soweit richtig??

    [daumenhoch]   Ja.


> wie muss ich jetzt fortfahren??


Bei a) ist die bedingte Wahrscheinlichkeit gefragt, dass
eine Person, die "positiv" getestet wurde, tatsächlich
krank ist. Das berechnet sich so:

   $\ P(krank\ |\ Test\ positiv)\ =\ [mm] \frac{P(krank\ und\ Test\ positiv)}{P(Test\ positiv)}$ [/mm]

Um den Nenner, also $\ P(Test\ positiv)$ zu berechnen, musst du
die zwei dazu gehörigen Produkte aus dem Baum addieren:

   $\ P(Test\ positiv)\ =\ P(krank\ und\ Test\ positiv)+P(gesund\ und\ Test\ positiv)$


LG    Al-Chw.

Bezug
                
Bezug
Bedingte Wahrscheinlichkeit: Top
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:15 Mi 04.11.2009
Autor: Kubs

Dankeschöööön =)

Bezug
                
Bezug
Bedingte Wahrscheinlichkeit: ka
Status: (Frage) beantwortet Status 
Datum: 20:36 Mi 04.11.2009
Autor: Kubs

Aufgabe
ich komm auf 1,2%

kann mir jemand die a) einfach vorrechnen?

Bezug
                        
Bezug
Bedingte Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 20:56 Mi 04.11.2009
Autor: nooschi

wie oben steht musst du die Formel anwenden:

$ \ P(krank\ |\ Test\ positiv)\ =\ [mm] \frac{P(krank\ und\ Test\ positiv)}{P(Test\ positiv)} [/mm] $

P(krank und Test Positiv) = 1/150 * 0.97
P(Test positiv) = 1/150 * 0.97 + (1 - 1/150) * 0.05

Endergebnis ist 0.1152019002...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]