matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieBedingte Wahrscheinlichkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Wahrscheinlichkeitstheorie" - Bedingte Wahrscheinlichkeit
Bedingte Wahrscheinlichkeit < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bedingte Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:39 Sa 02.07.2016
Autor: Reynir

Hallo,
wenn ich die Ereignisse [mm] $A:=\{1,2,3\}$, [/mm] also 1,2 oder drei beim ersten Wurf mit einem Würfel zu kriegen betrachte und [mm] $B:=\{6\}$ [/mm] beim Zweiten, dann könnte es ja sein, dass alles passiert, ohne, dass ich es sehe. Wenn mir jetzt jemand das zweite Ergebnis sagt und ich werde nach $P(A|B)$ gefragt, so ist das doch 0, weil die Ereignisse disjunkt sind.
Meine Frage wäre jetzt, wie man so etwas interpretieren kann. Weil es ist ja nicht so, nur weil 6 im zweiten Wurf geworfen wurde, dass der Würfel nicht auch im Ersten ein Element aus A erwischt haben könnte.
Viele Grüße,
Reynir

        
Bezug
Bedingte Wahrscheinlichkeit: Interpretation
Status: (Antwort) fertig Status 
Datum: 10:59 Sa 02.07.2016
Autor: Infinit

Hallo Reynir,
die Beantwortung hängt von der exakten Fragestellung ab, die Du aber wohl bereits richtig wiedergegeben hast. Bei jedem stochastischen Ereignis kann es natürlich vorkommen, dass dies nicht auftritt, aber in der Menge aller Ergebnismöglichkeiten vorhanden ist.
Wenn ich Deine Frage aber richtig verstehe, so hast Du einen Würfel und machst mit ihm zwei Würfe hintereinander. Das erste Ereignis ist dadurch gekennzeichnet, dass eine 1, 2, oder 3 beim ersten Wurf erscheint, dafür beträgt die Wahrscheinlichkeit 1/2 und dass beim darauffolgenden Wurf eine 6 erscheint, wofür die Wahrscheinlichkeit 1/6 beträgt. Beide Ereignisse sind disjunkt und selbst wenn Du weißt, dass das Ereignis B stattgefunden hat (das Würfeln der Sechs), so hat dies keinen Einfluß auf die bedingte Wahrscheinlichkeit, P(A|B) = P(A) in diesem Fall.
Viele Grüße,
Infinit

Bezug
                
Bezug
Bedingte Wahrscheinlichkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:04 Sa 02.07.2016
Autor: Reynir

Hallo,
vielen Dank für deine Antwort, ist es aber nicht so, dass gilt [mm] $P(A|B)=P(A\cap [/mm] B)/P(B)=0$ mit Wahrscheinlichkeit [mm] $P(A\cap [/mm] B)=0$.
Viele Grüße,
Reynir

Bezug
                        
Bezug
Bedingte Wahrscheinlichkeit: unabhängig ≠ disjunkt !
Status: (Antwort) fertig Status 
Datum: 12:31 Sa 02.07.2016
Autor: Al-Chwarizmi

Hallo Reynir

>  ..... , ist es nicht so, dass
> gilt [mm]P(A|B)=P(A\cap B)/P(B)=0[/mm] mit Wahrscheinlichkeit
> [mm]P(A\cap B)=0[/mm].


In der vorliegenden Situation stimmt es einfach nicht, dass [mm]P(A\cap B)=0[/mm] .

A bezieht sich ja nur auf den ersten und B auf den zweiten von zwei Würfen,
die unabhängig voneinander sind.
Die Ereignisse A und B sind aber keineswegs disjunkt im Rahmen
des Zufallsexperiments, bei dem die Ergebnisse von zwei Würfen
des Würfels betrachtet werden.

Es gilt:   [mm]P(A\cap B)\ =\ P(A)\ * P(B)\ =\ \frac{3}{6}\,*\,\frac{1}{6}\ =\ \frac{1}{12}[/mm]

Anders wäre es, wenn sich A und B auf einen einzigen Wurf des
Würfels beziehen würden. Nach Aufgabenstellung ist dies aber
nicht der Fall, sondern da wird ein erster und ein zweiter Wurf
des Würfels betrachtet.

LG  ,   Al-Chw.

Bezug
                                
Bezug
Bedingte Wahrscheinlichkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:08 Sa 02.07.2016
Autor: Reynir

Ah ok, dann hatte ich es falsch gedacht, danke für eure Hilfe.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]