matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieBedingte WS, diskrete Raum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Wahrscheinlichkeitstheorie" - Bedingte WS, diskrete Raum
Bedingte WS, diskrete Raum < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bedingte WS, diskrete Raum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:25 Di 09.08.2016
Autor: sissile

Aufgabe
DNA-Test: Am Tatort wird eine DNA-Probe sichergestellt. Von 1 Million Menschen hat statistisch gesehen nur einer ein DNA-Probe, das mit
dieser Probe übereinstimmt. Nun wird ein DNA-Test an n Verdächtigen durchgeführt. Die Wahrscheinlichkeit, dass der Test irrt, ist 0.001%.
a) Bei wie vielen von 10 Millionen Menschen würden Sie ein positives Testergebnis erwarten?
b) Der Test bei Mr. X ist positiv, und er ist einer von n= 20 möglichen Tätern. Wie groß ist die Wahrscheinlichkeit, dass Mr. X unschuldig ist?
Es darf angenommen werden, dass alle Personen verschiedene DNA-Probe haben.
(Mit der bedingten WS soll das Bsp gelöst werden)


Hallo,

[mm] +=\{ \mbox{ Test ist positiv }\} [/mm]
[mm] -=\{ \mbox{ Test ist negativ }\} [/mm]
[mm] U=\{ \mbox{ Probe stimmt überein mit am Tatort sichergestellte DNA-Probe }\} [/mm]
P(U)=0.000 001  da von 1 Million Menschen hat statistisch gesehen nur einer ein DNA-Probe, das mit dieser Probe übereinstimmt.
Daraus folgt  [mm] P(\overline{U})=0.999 [/mm] 999

Aus der anderen Information:
P(- |U)= P(+| [mm] \overline{U})=0.00001 [/mm]
P(+|U)=P(-| [mm] \overline{U})=0.99999 [/mm]

a)
[mm] P(+)=P(U)*P(+|U)+P(\overline{U})*P(+|\overline{U})=0.000011 [/mm] aus der totalen Wahrscheinlichkeitsformel.
D.h 10 Millionen*P(+)=110 Personen von 10 Million Menschen.

b)Ich weiß nicht wie ich n=20 einbringen soll!
Ich dachte zuerst ans [mm] P(\overline{U}| [/mm] +)= [mm] \frac{P(\overline{U})*P(+|\overline{U})}{P(+)}=0.9090 [/mm]  aber da hätte ich nich die 20 verdächtigen eingebracht..

Bereits gepostet bei http://www.matheboard.de/thread.php?threadid=570602.

        
Bezug
Bedingte WS, diskrete Raum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:55 Fr 12.08.2016
Autor: sissile

Hallo,
Ich weiß in den Ferien sind nicht so viele hier. Deshalb möchte ich die Frage nochmal öffnen, vlt kommt ja noch wer vorbei der Grundkenntnisse in Wahrscheinlichkeit hat und Zeit/Lust hat;)

Bezug
        
Bezug
Bedingte WS, diskrete Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 18:24 Fr 12.08.2016
Autor: Gonozal_IX

Hiho,

also erstmal: Deine Vorarbeit ist ok und stimmt soweit.
Die Aufgabenstellung ist meiner Meinung nach nicht eindeutig. Die Aussage "einer von 20 möglichen Tätern" enthält nicht die relevante Information, ob sich der Täter unter den 20 Männern befindet, oder sicher nicht, oder ob man darüber keine Informationen hat.

Das spielt aber eine Rolle…

Gruß,
Gono

Bezug
        
Bezug
Bedingte WS, diskrete Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 19:07 Fr 12.08.2016
Autor: mathfunnel

Hallo sissile!

Unter gewissen präzisierten Annahmen kann man wie folgt argumentieren:

Wenn man deine letzte Formel unter der Bedingung der zusätzlichen Information [mm]Z[/mm],
dass genau 20 Personen als Täter in Frage kommen und genau einer davon der Täter ist,
interpretiert, so ändern sich die einzelnen bedingten Wahrscheinlichkeiten entsprechend.
Beispielsweise ist

[mm]P(\overline{U}|Z) = \frac{19}{20}[/mm]


Explizit kann man die Wahrscheinlichkeit, dass Mr. X unschuldig gegeben + und Z ist, so schreiben:

[mm]P(\overline{U}|+Z)= \frac{P(\overline{U}|Z)\cdot{}P(+|\overline{U}Z)}{P(+|Z)}[/mm]

(Den Nenner muss man noch etwas umformen, um bekannte Wahrscheinlichkeiten einsetzen zu können)

Dann kommt natürlich zum Glück auch eine viel kleinerer Wert heraus.


LG mathfunnel

Bezug
                
Bezug
Bedingte WS, diskrete Raum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:17 Sa 13.08.2016
Autor: sissile

Hallo

$ [mm] P(\overline{U}|+Z)= \frac{P(\overline{U}|Z)\cdot{}P(+|\overline{U}Z)}{P(+|Z)}=\frac{P(\overline{U}|Z)\cdot{}P(+|\overline{U}Z)}{P(U|Z)*P(+|UZ)+P(\overline{U}|Z)\cdot{}P(+|\overline{U}Z)}=\frac{19/20 * 0.00001}{19/20*0.00001+ 1/20*0.99999} [/mm]  =0.00019$
macht 0.019%.

Im Lösungbuch steht:0.019% also wollte der Aufgabensteller genau auf das hinaus.
Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]