Bedingte Summe von ZVs < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:56 Sa 17.05.2014 | Autor: | nbt |
Aufgabe | Seien [mm] $X_n, n\in\mathbb{N}$, [/mm] identisch verteilte, unabhängige Zufallsvariablen mit [mm] $X_n\in\mathcal{L}^2(\Omega,\mathcal{A},P)$, $N:(\Omega,\mathcal{A})\to(\mathbb{N}_0,\mathcal{P}(\mathbb{N}_0))$ [/mm] eine weitere Zufallsvariable, unabhängig von [mm] $(X_n)_{n\in\mathbb{N}}$, [/mm] mit [mm] $N\in\mathcal{L}^2(\Omega,\mathcal{A},P)$. [/mm] Drücken Sie Erwartung und Varianz der Zufallsvariable
[mm] $Y:=\sum_{k=1}^NX_k$ [/mm]
durch die Erwartung und Varianz von [mm] $X_1$ [/mm] und $N$ aus. |
Hi,
so viel Ideen hatte ich bisher leider nicht. Den Erwartungswert von $Y$ habe ich geschrieben als
[mm] $E[Y]=E[\sum_{k=1}^NX_k]=E[E[\sum_{k=1}^nX_k [/mm] | [mm] N=n]]=\sum_{k=1}^nE[E[X_k [/mm] | [mm] N=n]]\stackrel{iid}{=}\sum_{k=1}^nE[E[X_1 [/mm] | [mm] N=n]]=nE[E[X_1|N=n]]$
[/mm]
Bei dem letzten Term fällt mir nur ein:
[mm] $nE[E[X_1|N=n]]=nE\left[\frac{E[X_1\mathbf{1}_{\{N=n\}}]}{P(N=n)}\right]$
[/mm]
Wo ich mir jetzt echt unsicher bin, ob man sagen kann:
[mm] $nE\left[\frac{E[X_1\mathbf{1}_{\{N=n\}}]}{P(N=n)}\right]\stackrel{X_1,N \text{unabh}}{=}nE\left[\frac{E[X_1]E[\mathbf{1}_{\{N=n\}}]}{P(N=n)}\right]=nE[E[X_1]]=nE[X_1]$
[/mm]
Aber das macht keinen Sinn, weil jetzt dasteht: [mm] $E[Y]=nE[X_1]$ [/mm] und was soll bitte $n$ sein!
Danke für die Hilfe,
nbt
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:07 Sa 17.05.2014 | Autor: | DesterX |
Hallo,
mach es so:
$ [mm] \operatorname{E}\left(\sum_{k=1}^N X_k \;\Big|\; N = n\right) [/mm] = [mm] \operatorname{E}\left(\sum_{k=1}^n X_k \right) [/mm] = [mm] \sum_{k=1}^n \operatorname{E}(X_k) [/mm] = n [mm] \operatorname{E}(X_1).$
[/mm]
Allgemein folgt schließlich:
[mm] \operatorname{E}\left(\sum_{k=1}^N X_k \;\Big|\; N\right) [/mm] = N [mm] \operatorname{E}(X_1).
[/mm]
Dann links und rechts Erwartungswert anwenden.
Viele Grüße, Dester
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 18:56 Sa 17.05.2014 | Autor: | nbt |
Hi Dester,
danke, jetzt hab ichs verstanden. Könntest Du noch kurz schauen, ob die Varianz so passt:
[mm] $Var[Y]=E[Var[\sum_{k=1}^NX_k [/mm] | [mm] N]]+Var[E[\sum_{k=1}^NX_k [/mm] | N]]=$
[mm] $=E[\sum_{k=1}^NVar[X_k|N]]+Var[NE[X_1]]=$
[/mm]
[mm] $=E[\sum_{k=1}^N(E[X_k^2|N]-E[X_k|N]^2)]+E[X_1]^2Var[N]=$
[/mm]
[mm] $\stackrel{iid}{=}E[\sum_{k=1}^N(E[X_1^2|N]-E[X_1|N]^2)]+E[X_1]^2Var[N]=$
[/mm]
[mm] $=\sum_{k=1}^N(E[E[X_1^2|N]]-E[E[X_1|N]]^2)+E[X_1]^2Var[N]=$
[/mm]
[mm] $=\sum_{k=1}^N(E[X_1^2]-E[X_1]^2)+E[X_1]^2Var[N]=$
[/mm]
[mm] $=NVar[X_1]+E[X_1]^2Var[N]$
[/mm]
Vielen Dank,
nbt
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:47 So 18.05.2014 | Autor: | DesterX |
Noch kann es so nicht ganz stimmen: Schließlich ist die Varianz von Y eine Zahl und am Ende bekommst du eine Zufallsvariable als Ergebnis.
Schau vielleicht mal hier vorbei.
|
|
|
|