matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenBedienung für Extremwerte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gewöhnliche Differentialgleichungen" - Bedienung für Extremwerte
Bedienung für Extremwerte < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bedienung für Extremwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:15 Sa 09.02.2013
Autor: Andynator

Aufgabe
Gegeben sei die Funktion f mit f(x) = [mm] ax^3 [/mm] + [mm] bx^2 [/mm] + cx + d
Welche Bedienungen müssen die Koeffizienten a, b, c und d jeweils erfüllen, damit f zwei Extremwerte besitzt?

Hallo!
Ich habe da eine Frage bezüglich der Aufgabe, da ich mit ihr nicht so richtig zurecht komme.
Würde es sich um eine Extremstelle handeln, hätte ich gesagt:
a = 0 [mm] \wedge [/mm] b [mm] \not= [/mm] 0
Da:
[mm] f'(x_{0}) [/mm] = 0, ..., [mm] f^{(n-1)}(x_{0}) [/mm] = 0,
[mm] f^{(n)}(x_{0}) \not= [/mm] 0 und n gerade sein muss.
Dann hätte ich genau 1 Extremstelle, da das [mm] x^3 [/mm] wegfällt und die 2. Ableitung den Wert von b enthält.

Bei 2 Extremstellen... ja, muss ich da nicht einfach ein [mm] x_{1} [/mm] finden, was eben auch die obigen Kriterien erfüllt?
Nur würde ich dadurch ja nichts an den Koeffizienten aussagen. Und die Lösung sagt mir was vollkommen anderes, worauf ich nie im Leben gekommen wäre und auch nach längeren Überlegen meiner Meinung nach keinen Sinn ergibt...

        
Bezug
Bedienung für Extremwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 01:24 Sa 09.02.2013
Autor: steppenhahn

Hallo,


> Gegeben sei die Funktion f mit f(x) = [mm]ax^3[/mm] + [mm]bx^2[/mm] + cx + d
>  Welche Bedienungen müssen die Koeffizienten a, b, c und d
> jeweils erfüllen, damit f zwei Extremwerte besitzt?
>  Hallo!
>  Ich habe da eine Frage bezüglich der Aufgabe, da ich mit
> ihr nicht so richtig zurecht komme.
>  Würde es sich um eine Extremstelle handeln, hätte ich
> gesagt:
>  a = 0 [mm]\wedge[/mm] b [mm]\not=[/mm] 0
>  Da:
>  [mm]f'(x_{0})[/mm] = 0, ..., [mm]f^{(n-1)}(x_{0})[/mm] = 0,
>  [mm]f^{(n)}(x_{0}) \not=[/mm] 0 und n gerade sein muss.
>  Dann hätte ich genau 1 Extremstelle, da das [mm]x^3[/mm] wegfällt
> und die 2. Ableitung den Wert von b enthält.

Das ist ok.



> Bei 2 Extremstellen... ja, muss ich da nicht einfach ein
> [mm]x_{1}[/mm] finden, was eben auch die obigen Kriterien erfüllt?

Genau.
Also bilde zunächst die erste Ableitung:

$f'(x) = 3 a [mm] x^2 [/mm] + 2 b x + c$.

Damit du zwei Extremstellen bekommst, musst die erste Ableitung zwei Nullstellen haben. Dafür brauchst du auf jeden Fall $a [mm] \not= [/mm] 0$.

Du musst nun also die Bedingung für a,b,c finden, so dass die quadratische Gleichung $f'(x) = 0$ zwei Lösungen hat.

Dadurch bekommst du doch Bedingungen für die Koeffizienten.

Viele Grüße,
Stefan


Bezug
                
Bezug
Bedienung für Extremwerte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:10 Sa 09.02.2013
Autor: Andynator

Hallo Stefan!

Danke für die Hilfe!
Jetzt war der Rest auch klar, das ganze kann man dann ja durch anschauen und bisschen überlegen der PQ-Formel relativ schnell lösen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]