matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieBayes oder nicht Bayes?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Wahrscheinlichkeitstheorie" - Bayes oder nicht Bayes?
Bayes oder nicht Bayes? < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bayes oder nicht Bayes?: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:02 Di 19.01.2010
Autor: iks

Aufgabe 1
Nach einem Picknick vermisst eine Familie ihren Hund. Drei Möglichkeiten gibt es:

[mm] \begin{itemize} \item[a. ]a) Er ist heimgelaufen. \item[b. ]b) Er bearbeitet noch seinen großen Knochen auf dem Picknickplatz. \item[c. ]c) Er streunt im Wald. \end{itemize} [/mm]

Die a-priori Wahrscheinlichkeiten schätzt man auf

[mm] \begin{itemize} \item[a. ]a) 0,25 \item[b. ]b) 0,5 \item[c. ]c) 0,25 \end{itemize} [/mm]

Je ein Kind wird zurück zum Picknickplatz und an den Waldrand geschickt. Wenn er auf dem
Picknickplatz ist, wird er mit [mm] 90\% [/mm] Wahrscheinlichkeit gefunden, wenn er im Wald ist, mit [mm] 50\% [/mm] Wahrscheinlichkeit.

[mm] \begin{itemize} \item[i ](i) Mit welcher Wahrscheinlichkeit wird man den Hund im Gelände finden (b. oder c.) \item[ii ](ii) mit welcher Wahrscheinlichkeit ist er zu Hause? \item[iii ](iii) Mit welcher Wahrscheinlichkeit ist er 'verlorengegangen'? \end{itemize} [/mm]


Aufgabe 2
Bei einem Flug von Berlin nach Florenz ist Ihr Gepäck nicht angekommen. Es war dreimal
umgeladen worden, und die a-priori Wahrscheinlichkeit, dass dabei ein Fehler geschah war

[mm] \begin{itemize} \item[a. ]a) 1. Station. 40\% \item[b. ]b) 2. Station: 20\% \item[c. ]c) 3. Station: 10\% \end{itemize} [/mm]

Mit welcher Wahrscheinlichkeit wurde beim ersten Umladen geschlampt?

Irgendwie fühle ich mich bei Aufgaben dieses Typs immer unsicher. Drum erst einmal meine Lösung

[mm] \underline{Aufgabe 1} [/mm]

folgende Abkürzungen werden verwendet: $W$:=Wald, [mm] $P$:=Parkplatz,$H$:=zuHause,$G$:=gefunden,$\neg [/mm] G$:=nicht gefunden

i) Die Wahrscheinlichkeit für das Ereignis D Er wird draussen gefunden ergibt sich aus

[mm] $p(D)=p(G,W)+p(G,P)=0,5*0,5+0,25*0,9=\frac{1}{4}(1+\frac{9}{10})=\frac{19}{40}$ [/mm]

begin edit

habe die Wahrscheinlichkeiten wohl falsch zugeordnet. Dann ist

[mm] $p(D)=p(W)*p(G|W)+p(P)*p(G|P)=\frac{1}{4}*\frac{1}{2}+\frac{1}{2}*\frac{9}{10}=\frac{23}{10}\hat=57,5\% [/mm]

end edit

ii) Die Wahrscheinlichkeit für wird nicht gefunden :=E

[mm] $p(E)=p(\neg G,W)+p(\neg G,P)+p(\neg G,H)=0,5*0,5+0,25*0,1+0,25*0=\frac{11}{40}$ [/mm]

begin edit

Hier der gleiche Fehler

[mm] $p(E)=p(W)*p(\neg G|W)+p(P)*p(\neg G|P)=\frac{1}{4}*\frac{1}{2}+\frac{1}{2}*\frac{1}{10}=\frac{7}{40}$ [/mm]

end edit

iii) Somit bleibt für

$p(H)=1-p(D)-P(E)=0,25$

da hat sich also nichts verändert.

[mm] \underline{2. Aufgabe} [/mm]

Hier gehe ich davon aus, das [mm] $p(1)=p(2)=p(3)=\frac{1}{3}$ [/mm] gilt.
Dann ist in der Aufgabenstellung gegeben:

$p(v|1)=0,4,p(v|2)=0,2,p(v|3)=0,1$

wobei $v$:=verloren und 1,2,3 die jeweilige Station bedeutet.

nun ist am Ende der Reise das Ereignis $v$ beobachtet worden und errechnet werden soll das Ereignis (1|v).
Dann wäre:

[mm] $p(1|v)=\frac{p(1)*p(v|1)}{\sum_{i=1}^3 p(i)*p(v|i)}=\frac{p(1)*p(v|1)}{p(1)*\sum_{i=1}^3 p(v|i)}=\frac{0,4}{0,4+0,2+0,1}=\frac{0,4}{0,7}=\frac{4}{7}$ [/mm]

Stimmt das soweit oder haben sich Fehler eingeschlichen? Wäre für Hinweise dankbar.

mFg iks

        
Bezug
Bayes oder nicht Bayes?: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Fr 22.01.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]