matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenBasiswechselmatrizen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Matrizen" - Basiswechselmatrizen
Basiswechselmatrizen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basiswechselmatrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:24 So 29.01.2012
Autor: hubbel

Hallo Leute,

habe leider speziell keine Aufgabe zu dem Thema, aber habe ein paar Fragen. Was genau benötige ich um eine Basiswechselmatrix zu bestimmen? Habe es so verstanden, dass ich 2 Basen benötige und eine Abbildungsmatrix bzw. Abbildungsvorschrift. Aber wie genau bestimme ich ein [mm] \theta? [/mm]

Wäre dankbar für Hilfe, die mich nicht sofort auf Wikipedia verweist, wenn möglich vielleicht auch mit einer passenden Beispielaufgabe. Danke schonmal!

        
Bezug
Basiswechselmatrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:41 So 29.01.2012
Autor: EvelynSnowley2311

Hi hubbel,

eine Basiswechselmatrix ( oder wie ich sie gerne nenne Transformationsmatrix) lässt sich erarbeiten mit erstmal 2 basen.

machen wir mal eine beispielaufgabe:

Seien V = [mm] \IR^3 [/mm] und B die basis:

B := ( [mm] \vektor{1 \\ 2 \\ 3},\vektor{0 \\ 1 \\ 2}, \vektor{0 \\ 1 \\ 1}) [/mm]

Weiterhin seit E := [mm] (e_{1},e_{2},e_{3}) [/mm] die Standardbasis vom V = [mm] \IR^3. [/mm]

Berechne die Basiswechselmatrizen [mm] T_{B}^E [/mm] und [mm] T_{E}^B [/mm]

na, ne Idee wie man vorgeht?

Bezug
                
Bezug
Basiswechselmatrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:16 So 29.01.2012
Autor: hubbel

Wir haben die Dinger immer [mm] \theta_{CB} \theta_{BC} [/mm] genannt, da hatte ich, wie auch bei deiner Bezeichnung immer das Problem, dass ich nicht wusste, wie rum ich das ganze ansetze.

Ich würde erstmal die Basis B durch E ausdrücken:

[mm] \vektor{1 \\ 2 \\ 3}=\vektor{1 \\ 0 \\ 0}+2\vektor{0 \\ 1 \\ 0}+3\vektor{0 \\ 0 \\ 1} [/mm]

[mm] \vektor{0 \\ 1 \\ 2}=0\vektor{1 \\ 0 \\ 0}+\vektor{0 \\ 1 \\ 0}+2\vektor{0 \\ 0 \\ 1} [/mm]

[mm] \vektor{0 \\ 1 \\ 1}=0\vektor{1 \\ 0 \\ 0}+\vektor{0 \\ 1 \\ 0}+\vektor{0 \\ 0 \\ 1} [/mm]

Also wäre eine Basiswechselmatrix:

[mm] \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 1 \\ 3 & 2 & 1 \end{pmatrix} [/mm]

Die andere wäre dann analog, nur welche ist das jetzt? Bzw. stimmt das so überhaupt?

Bezug
                        
Bezug
Basiswechselmatrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:26 So 29.01.2012
Autor: EvelynSnowley2311

heyhey,

perfekt gelöst.  deine Matrix ist die Matrix von B nach E, da du B als LK von E darstellst. also hast du [mm] T_{E}^B [/mm] berechnet ( oben steht die Basis, die du als LK der unteren darstellst.

die Basiswechselmatrix [mm] T_{B}^E [/mm] wäre nun die Invertierte Matrix hiervorn, sprich [mm] T_{B}^E [/mm] = [mm] (T_{E}^B)^{-1} [/mm]

Bezug
                                
Bezug
Basiswechselmatrizen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:31 So 29.01.2012
Autor: hubbel

Verstehe, danke dir, noch eine Frage, wo findet sowas Anwendung?

Bezug
                                        
Bezug
Basiswechselmatrizen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Di 31.01.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]