matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenBasiswechselmatrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Matrizen" - Basiswechselmatrix
Basiswechselmatrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basiswechselmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:33 Fr 05.12.2014
Autor: Stef99

Aufgabe
zwei Basisübergangsmatrizen bestimmen zu:
K1=(e1,e2,e3)
B1=((1,0,1),(0,0,2),(0,3,0))


Wie bestimme ich eine Basisübergangsmatrix?
Die beiden Matrizen die ich bestimmen muss, müssten [mm] T_{K1}^{B1} [/mm] und [mm] T_{B1}^{K1} [/mm] sein. Leider weiß ich nicht, was diese Schreibweise überhaupt heißen soll und wie ich so auf eine Matrix kommen soll. Dass es sich bei K um die Standardbasis handelt, ist mir bewusst.

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: http://www.matheboard.de/thread.php?threadid=549785

        
Bezug
Basiswechselmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 14:17 Fr 05.12.2014
Autor: Marcel

Hallo,

> zwei Basisübergangsmatrizen bestimmen zu:
>  K1=(e1,e2,e3)
>  B1=((1,0,1),(0,0,2),(0,3,0))
>  Wie bestimme ich eine Basisübergangsmatrix?
> Die beiden Matrizen die ich bestimmen muss, müssten
> [mm]T_{K1}^{B1}[/mm] und [mm]T_{B1}^{K1}[/mm] sein. Leider weiß ich nicht,
> was diese Schreibweise überhaupt heißen soll und wie ich
> so auf eine Matrix kommen soll. Dass es sich bei K um die
> Standardbasis handelt, ist mir bewusst.
>
> Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt:
> http://www.matheboard.de/thread.php?threadid=549785

ich verstehe den Sinn Deiner Frage nicht ganz. Du hast doch auf dem
Matheboard Antworten bekommen.

Ansonsten steht

    []hier: http://de.wikipedia.org/wiki/Basiswechsel_%28Vektorraum%29#Basiswechsel_bei_Abbildungsmatrizen

doch sehr viel zu dem, was Du brauchst. Vor allem das Beispiel ist doch
sehr schön - mache einfach genau das, was dort steht, mit Deinen Basen.

P.S. Weil ich gerade eines Deiner Probleme aus Deinen Mitteilungen im
Matheboard erkannt habe:
Bei [mm] $T_{B'}^B$ [/mm] (Basiswechsel von [mm] $B\,$ [/mm] nach [mm] $B\,'$) [/mm] würdest Du mit

    [mm] $\pmat{1 & 0 & 0 | & 1 & 0 & 0\\0 & 0 & 3| & 0 & 1 & 0 \\1 & 2 & 0 |& 0& 0 & 1}$ [/mm]

loslegen. Dass hier in der Tat nichts anderes als

    [mm] $\pmat{1 & 0 & 0 \\0 & 0 & 3\\1 & 2 & 0 }^{-1}$ [/mm]

berechnet wird, liegt nur daran, dass oben rechts die Einheitsmatrix steht
(nach den | ) - etwas salopper (d.h. unsauber, aber vielleicht kommt es
dennoch besser an): In Matrixnotation ist [mm] $K_1$ [/mm] die Einheitsmatrix.

Und natürlich ist oben [mm] $K_1=B$ [/mm] und [mm] $B_1=B\,'$. [/mm]

P.P.S. Vielleicht machst Du Dir klar, dass, wenn [mm] $K_1$ [/mm] anders aussehen würde,
und man dann diese andere Basis in Matrixnotation schreibt, dass dann

    [mm] $\pmat{1 & 0 & 0 \\0 & 0 & 3\\1 & 2 & 0 }^{-1}*K_1$ [/mm]

berechnet werden würde. (Wie gesagt: Rechts dann [mm] "$K_1$ [/mm] in Matrixnotation!")

Gruß,
  Marcel

Bezug
                
Bezug
Basiswechselmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:41 Fr 05.12.2014
Autor: Stef99

Okay, Dankeschön! So ist das echt viel verständlicher :) damit hätte ich den ersten Teil jetzt geschafft.
Für den zweiten Teil der Aufgabe sind ja
K2= (e1,e2,e3,e4) und B2=(e1+e2,e2+e3,e3+e4,e4) gegeben. Geh ich richtig in der Annahme, dass B2 so aussieht:
[mm] \pmat{ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 &0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 } [/mm] ? Und hier geh ich dann wieder so vor, wie eben beschrieben?

Bezug
                        
Bezug
Basiswechselmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 15:09 Fr 05.12.2014
Autor: Marcel

Hallo,

> Okay, Dankeschön! So ist das echt viel verständlicher :)
> damit hätte ich den ersten Teil jetzt geschafft.
> Für den zweiten Teil der Aufgabe sind ja
> K2= (e1,e2,e3,e4) und B2=(e1+e2,e2+e3,e3+e4,e4) gegeben.
> Geh ich richtig in der Annahme, dass B2 so aussieht:
>  [mm]\pmat{ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 &0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 }[/mm] ?

da hast Du irgendwas durcheinander gebracht: [mm] $\red{e_1+e_2}=(1,0,0,0)^T+(0,1,0,0)^T=\red{(1,1,0,0)^T}\,.$ [/mm]

Deswegen

    [mm] $\pmat{ \red{1} & 0 & 0 & 0\\ \red{1} & 1 & 0 & 0 \\ \red{0} & 1 & 1 & 0 \\ \red{0} & 0 & 1 & 1}$ [/mm]

> Und hier geh ich dann wieder so vor, wie eben beschrieben?  

Ja - Du hast nur diese Matrix zu invertieren (und dann von rechts die
Einheitsmatrix des [mm] $\IR^{4 \times 4}$ [/mm] (das entspricht [mm] $K_2$) [/mm] dranzumultiplizieren,
was aber keine Veränderung bewirkt).

P.S. Schreibt ihr den [mm] $\IR^n$ [/mm] als Zeilenvektor- oder Spaltenvektorraum? Denn
wenn ihr mit Zeilenvektornotationen arbeitet, muss man ein wenig mit der
Notation aufpassen. Dein Ansatz zur ersten Aufgabe passt aber eigentlich
auch eher zur Spaltenvektornotation, sprich [mm] $\IR^n=\IR^{n \times 1}\,.$ [/mm]

Ich frage deswegen, weil ich gerade bemerkt habe, dass Du die Transponierte
der Matrix, die ich oben hingeschrieben habe, bei der zweiten Aufgabe
gebildet hattest!

Gruß,
  Marcel

Bezug
                                
Bezug
Basiswechselmatrix: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:23 Fr 05.12.2014
Autor: Stef99

oh, natürlich muss das anders herum...

Wenn ich nicht ganz falsch liege, schreiben wir das als Spaltenvektorraum. Was Du mit dem letzten Satz meinst, versteh ich allerdings leider nicht.

Wenn ich zudem noch die lineare Abbildung betrachten soll:
f: [mm] \IR [/mm] ^{4} [mm] \to \IR [/mm] ^{3}, [mm] f(x_{1}, x_{2},x_{3}, x_{4}) [/mm] = [mm] (x_{1}+x_{2}+x_{3}, 2x_{2}-x_{4}, x_{3}+5x_{1}) [/mm]
Wie bestimme ich dann alle 4 möglichen darstellenden Matrizen bezüglich der Basen, mit denen ich eben gearbeitet habe?

Gruß Steffi

Bezug
                                        
Bezug
Basiswechselmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 15:05 Sa 06.12.2014
Autor: Marcel

Hallo,

ich bin gerade auf dem Sprung, daher nur kurz:

> oh, natürlich muss das anders herum...
>
> Wenn ich nicht ganz falsch liege, schreiben wir das als
> Spaltenvektorraum. Was Du mit dem letzten Satz meinst,
> versteh ich allerdings leider nicht.

Na, wenn Du anstatt Spaltenvektoren Zeilenvektoren schreibst, schreibst
Du quasi die Transponierte einer Matrix hin. Nichts anderes habe ich gesagt,
und Du wiederholst es hier in der Feststellung "natürlich muss das anders
herum..."

> Wenn ich zudem noch die lineare Abbildung betrachten soll:
>  f: [mm]\IR[/mm] ^{4} [mm]\to \IR[/mm] ^{3}, [mm]f(x_{1}, x_{2},x_{3}, x_{4})[/mm] =
> [mm](x_{1}+x_{2}+x_{3}, 2x_{2}-x_{4}, x_{3}+5x_{1})[/mm]
>  Wie
> bestimme ich dann alle 4 möglichen darstellenden Matrizen
> bezüglich der Basen, mit denen ich eben gearbeitet habe?

Dazu evtl. später mehr. (Ich gebe Dir aber den Hinweis, dass Du diesbezüglich
in dem verlinkten Wiki-Artikel Informationen auch selbst finden kannst!)

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]