matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenBasiswechsel, ein letztes Mal.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Abbildungen" - Basiswechsel, ein letztes Mal.
Basiswechsel, ein letztes Mal. < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basiswechsel, ein letztes Mal.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:06 Mo 28.12.2009
Autor: kappen

Aufgabe
Gegeben seien diese Vektoren:
[mm] v_1=\vektor{1 \\1\\0} [/mm]
[mm] v_2=\vektor{0 \\ 0\\1} [/mm]
[mm] v_3=\vektor{0 \\ 1\\1} [/mm]

a) Bestimmen Sie die Darstellungsmatrix A der Linearen Abbildung an, die [mm] v_1 [/mm] auf [mm] v_2, v_2 [/mm] auf [mm] v_3 [/mm] und [mm] v_3 [/mm] auf [mm] v_1 [/mm] abbildet
b) Bestimmen Sie A in der Basis [mm] {v_1,v_2,v_3} [/mm]

Hi leute. Dachte eigentlich hätt ichs endlich mal gerafft, leider kommt was falsches raus. Ich rechne mal vor:

a)
[mm] A^E_E [/mm] <- kann man so schreiben, oder? Ist doch die Abbildungsmatrix in Standardbasis. ABER hier schon ne Frage: Das ist die Basis des Urbildraums und des Bildraums, oder? Kann ich auch getrennte Basen für beide Räume betrachten/berechnen?

Naja weiter gehts:

[mm] A^E_E*(v_1,v_2,v_3)=(v_2,v_3,v_1) [/mm]
[mm] \gdw A^E_E=(v_2,v_3,v_1)*(v_1,v_2,v_3)^{-1} [/mm]
[mm] \gdw A^E_E=\pmat{-1 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & -1 & 1 } [/mm]

b)
Ich suche jetzt A in Basis [mm] W={v_1,v_2,v_3}, [/mm] oder?

Also [mm] A^W_W=T^W_E*A^E_E*T^E_W? [/mm]

[mm] T^W_E [/mm] ist einfach, da Linearkombination der Einheitsvektoren: [mm] T^W_E=\pmat{1 & 0 & 0 \\ 1 & 0 & 1 \\0 & 1 & 1 } [/mm]

[mm] T^E_W [/mm] ist [mm] (T^W_E)^{-1}=\pmat{1 & 0 & 0 \\ 1 & -1 & 1 \\-1 & 1 & 0 } [/mm]

Wenn ich jetzt  [mm] A^W_W=T^W_E*A^E_E*T^E_W [/mm] berechne, bekomme ich [mm] \pmat{0 & -1 & 1 \\ 0 & 1 & 0 \\-1 &3 & -1 } [/mm] raus.

Das entspricht leider nicht der Lösung [mm] \pmat{0 & 0 & 1 \\ 1 & 0 & 0 \\0 & 1 & 0 } [/mm]

Habe ich jetzt totalen Schwachsinn gerechnet, oder was ist falsch?

Danke & Schöne Grüße


EDIT:

also, es scheint, als wären [mm] T^W_E [/mm] und [mm] T^E_W [/mm] vertauscht worden ganz zum Schluss. Wenn ich anders rum multipliziere passts. Wo ist denn dann mein Fehler?
Von einem Kommilitonen hab' ich auch noch das als "komplette Lösung" bekommen:

[mm] A(v_1)=0*v_1+1*v_2+0*v_3 [/mm]
usw

[mm] \Rightarrow \pmat{0 & 0 & 1 \\ 1 & 0 & 0 \\0 & 1 & 0 } [/mm]

Da kann ich leider nicht viel mit anfangen, vllt könnte mir das auch noch jemand erklären?=)

Danke Leute




        
Bezug
Basiswechsel, ein letztes Mal.: Antwort
Status: (Antwort) fertig Status 
Datum: 23:08 Mo 28.12.2009
Autor: nooschi

dein einziges Problem ist, dass du die Basiswechsel genau falsch rum geschrieben hast. d.h.

[mm] T_{W}^{E}=\pmat{ 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 } [/mm]
[mm] T_{E}^{W}=\pmat{ 1 & 0 & 0 \\ 1 & -1 & 1 \\ -1 & 1 & 0 } [/mm]

so bekommst du ja, wie du bereits gemerkt hast die richtige Lösung mit
[mm] A_{W}^{W}=T_{W}^{E}*A_{E}^{E}*T_{E}^{W} [/mm]



noch zu den Basiswechsel folgendes:
wenn ein Vektor in der Basis W mit [mm] T_{W}^{E} [/mm] multipliziert wird, soll der Vektor bezüglich der Basis E herauskommen.
Wir haben ja die Vektoren [mm] v_{1},v_{2} [/mm] und [mm] v_{3} [/mm] in der Basis E! Wenn man diese Vektoren in der Basis W ausdrückt, sind das gerade die Vektoren [mm] \vektor{1 \\ 0 \\ 0}, \vektor{0 \\ 1 \\ 0}, \vektor{0 \\ 0 \\ 1}. [/mm] Falls dich das noch verwirrt, empfehle ich dir wärmstans den Artikel von Angela: https://matheraum.de/read?i=619317 , der hat mir zumindest sehr weitergeholfen.
Zurück zum Basiswechsel: das bedeutet also, dass:
[mm] T_{W}^{E}*\vektor{1 \\ 0 \\ 0}=v_{1} [/mm]
[mm] T_{W}^{E}*\vektor{0 \\ 1 \\ 0}=v_{2} [/mm]
[mm] T_{W}^{E}*\vektor{0 \\ 0 \\ 1}=v_{3} [/mm]
und das stimmt gerade, wenn du die Matrix von oben benützt.

Bezug
                
Bezug
Basiswechsel, ein letztes Mal.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:26 Di 29.12.2009
Autor: kappen

Okay dankeschön.

Wieso sind die denn falsch herum? Hab's doch eigentlich so gemacht wie hier steht: http://www.stud.uni-hannover.de/~fmodler/Transformationsmatrizen%20und%20Basiswechsel.pdf

ich dachte [mm] T^W_E [/mm] ist die Matrix in der die Linearkombinationen mit den Einheitsvektoren stehen?

Bezug
                        
Bezug
Basiswechsel, ein letztes Mal.: Antwort
Status: (Antwort) fertig Status 
Datum: 18:41 Di 29.12.2009
Autor: angela.h.b.


> Okay dankeschön.
>  
> Wieso sind die denn falsch herum? Hab's doch eigentlich so
> gemacht wie hier steht:
> http://www.stud.uni-hannover.de/~fmodler/Transformationsmatrizen%20und%20Basiswechsel.pdf
>  
> ich dachte [mm]T^W_E[/mm] ist die Matrix in der die
> Linearkombinationen mit den Einheitsvektoren stehen?

Hallo,

ja.

In Eurer Schreibweise ist [mm] T^W_E [/mm] die Matrix, die den Basiswechsel von W nach E vollzieht. Wenn E die Standardbasis ist, enthält [mm] T^W_E [/mm] also die Basisvektoren von W in Standardkoordinaten.

So weit hast Du recht.

Du schreibst nun dies:

> > >  $ [mm] A^W_W=T^W_E\cdot{}A^E_E\cdot{}T^E_W [/mm] $ ,

und das ist falsch.

Es muß $ [mm] A^W_W=T^E_W \cdot{}A^E_E\cdot{}T^W_E$ [/mm] heißen, denn [mm] A^W_W [/mm] ist ja eine Matrix, die  mit Vektoren bzgl W gefüttert wird und solche auch wieder von sich gibt.

Gruß v. Angela


Bezug
                                
Bezug
Basiswechsel, ein letztes Mal.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:34 Mi 30.12.2009
Autor: kappen

Danke für die Antwort :)

Nun hab' ich leider ein Beispiel, bei dem das nicht hinkommt.

Btw, das ist nicht unsere Schreibweise, wir haben das Ganze überhaupt nicht mit Indzies gemacht.

Also hier das Beispiel:

Gegeben:
Lineare Abbildung V (wie schreibt man das korrekt hin, auf was wird V mit M abgebildet?!)
[mm] M^B_B=\pmat{ -1 & 0 &0 \\ 0&1&0\\0&0&2 } [/mm]
Basis [mm] B=\pmat{1&0&0\\2&1&1\\3&2&1} [/mm]
Standardbasis E

Nun sind die Transformationsmatrizen [mm] T^B_E [/mm] und [mm] T_B^E [/mm] gesucht.

Ich dachte, [mm] T^B_E [/mm] sei jetzt kein Problem mehr, da:
[mm] \vektor{1 \\ 2\\3}=a*e_1+b*e_2+c*e_3 [/mm] -> a=1, b=2, c=3 etc etc

also [mm] T^B_E=\pmat{1&0&0\\2&1&1\\3&2&1} [/mm]

[mm] T_B^E [/mm] hingegen ist das Inverse von [mm] T^B_E, [/mm] also [mm] \pmat{1&0&0\\-1&-1&1\\-1&2&-1} [/mm]

Jetzt ist [mm] M^E_E [/mm] gesucht, also Transformationsformel : [mm] M^E_E=T^B_E*M_B^B*T^E_B [/mm]

Leider kommt wieder genau das andere raus, laut Lösung soll es so sein: [mm] \pmat{-1&0&0\\5&3&1\\-1&-2&0} [/mm]

Und das kommt auch raus, wenn ich [mm] M^E_E [/mm] so berechne (das ist übrigens total geil, da die Transformationsmatrizen wegfallen; wieso geht das und gibt es noch mehr dieser "Abkürzungen"?):

1. Spalte von [mm] M^E_E: V*b_1= \pmat{ -1 & 0 &0 \\ 0&1&0\\0&0&2 }*\vektor{1\\2\\3}=\vektor{-1\\2\\6}=a*\vektor{1\\2\\3}+b*\vektor{0\\1\\2}+c*\vektor{0\\1\\1} [/mm] -> a=-1, b=5, v=-1, entspricht der 1. Spalte der Musterlösung.
Wieso geht das so einfach :D? Ist es, wenn ich M auf B anwende, dass ich eine Linearkombination der Basis B erstelle? Aber was hat das mit der Standardbasis zu tun, denn B und M sind in Basis B, da is doch garnix mit E?

Egal, jedenfalls sind entweder meine Transformationsmatrizen oder hinterher bei der berechnung wieder Dreher drin. Könntet ihr mir sagen, wo und warum? Irgendwann musses doch lüppen :(

Gruß und ein fettes Danke,
kappen

Bezug
                                        
Bezug
Basiswechsel, ein letztes Mal.: Antwort
Status: (Antwort) fertig Status 
Datum: 18:58 Mi 30.12.2009
Autor: angela.h.b.


> Danke für die Antwort :)
>  
> Nun hab' ich leider ein Beispiel, bei dem das nicht
> hinkommt.
>
> Btw, das ist nicht unsere Schreibweise, wir haben das Ganze
> überhaupt nicht mit Indzies gemacht.
>  
> Also hier das Beispiel:
>  
> Gegeben:
>  Lineare Abbildung V (wie schreibt man das korrekt hin, auf
> was wird V mit M abgebildet?!)
>  [mm]M^B_B=\pmat{ -1 & 0 &0 \\ 0&1&0\\0&0&2 }[/mm]
>  Basis
> [mm]B=\pmat{1&0&0\\2&1&1\\3&2&1}[/mm]

Hallo,

was meinst Du hiermit?

Ich gehe davon aus, daß Du sagen willst [mm] B=\{b_1:=\vektor{1\\2\\3}, b_2:=\vektor{0\\1\\2}, b_3:=\vektor{0\\1\\1}\}. [/mm]

>  Standardbasis E
>  
> Nun sind die Transformationsmatrizen [mm]T^B_E[/mm] und [mm]T_B^E[/mm]
> gesucht.
>  
> Ich dachte, [mm]T^B_E[/mm] sei jetzt kein Problem mehr, da:
>  [mm]\vektor{1 \\ 2\\3}=a*e_1+b*e_2+c*e_3[/mm] -> a=1, b=2, c=3 etc

> etc
>  
> also [mm]T^B_E=\pmat{1&0&0\\2&1&1\\3&2&1}[/mm]
>  
> [mm]T_B^E[/mm] hingegen ist das Inverse von [mm]T^B_E,[/mm] also
> [mm]\pmat{1&0&0\\-1&-1&1\\-1&2&-1}[/mm]
>  
> Jetzt ist [mm]M^E_E[/mm] gesucht, also Transformationsformel :
> [mm]M^E_E=T^B_E*M_B^B*T^E_B[/mm]
>  
> Leider kommt wieder genau das andere raus, laut Lösung
> soll es so sein: [mm]\pmat{-1&0&0\\5&3&1\\-1&-2&0}[/mm]


Diese Lösung ist falsch.

Richtig ist [mm] \pmat{-1&0&0\\-5&3&-1\\-7&2&0}. [/mm]

>  
> Und das kommt auch raus, wenn ich [mm]M^E_E[/mm] so berechne (das
> ist übrigens total geil, da die Transformationsmatrizen
> wegfallen; wieso geht das und gibt es noch mehr dieser
> "Abkürzungen"?):
>  
> 1. Spalte von [mm][mm] M^E_E: V*b_1= \pmat{ -1 & 0 &0 \\ 0&1&0\\0&0&2 }*\vektor{1\\2\\3} [/mm]

Das ist Unfug - bzw. man kann das natürlich berechnen, aber das ist nicht die erste Spalte von [mm] M^E_E. [/mm]

Für die erste Spalte von E würdest Du (ohne Transformationsmatrizen) erstmal den ersten Standardbasisvektor [mm] e_1 [/mm] als Linearkombination der [mm] b_i [/mm] schreiben:

[mm] e_1=1*b_1-1*b_2-1*b_3=\vektor{1\\-1\\-1}_{(B)}. [/mm]

Nun ist

[mm] f(e_1)=M^B_B*\vektor{1\\-1\\-1}_{(B)}=\vektor{-1\\-1\\-2}_{(B)}=-b_1-b_2-2b_3=\vektor{-1\\-5\\-7}. [/mm]

Die anderen Spalten entsprechend.

Du darfst [mm] M^B_B [/mm] nur mit Vektoren, die in Koordinaten bzgl B gegeben sind, füttern, und Du bekommst auch Koordinatenvektoren bzgl B heraus - das darf man nicht vergessen.
Wenn Verwirrung droht, notiere ich an den Spalten immer die Basis, auf welche man sich gerade bezieht. Wenn nichts dasteht, ist's die Standardbasis E.


Du hast das Bild von [mm] \vektor{1\\2\\3}_{(B)} [/mm] ausgerechnet, also von [mm] b_1+2b_2+3b_3=\vektor{1\\7\\10}, [/mm]

und herausgefunden [mm] f(\vektor{1\\7\\10})=\vektor{-1\\2\\6}_{(B)}=\vektor{-1\\6\\7}. [/mm]


Das bestätigt auch meine Matrix [mm] M^E_E, [/mm] welche Vektoren bzgl. E frißt und von sich gibt: [mm] \pmat{-1&0&0\\-5&3&-1\\-7&2&0}*\vektor{1\\7\\10}=\vektor{-1\\6\\7}. [/mm]


> [mm]=\vektor{-1\\2\\6}=a*\vektor{1\\2\\3}+b*\vektor{0\\1\\2}+c*\vektor{0\\1\\1}[/mm]
> -> a=-1, b=5, v=-1, entspricht der 1. Spalte der
> Musterlösung.

.
...welche leider falsch ist.

Gruß v. Angela



Bezug
                                                
Bezug
Basiswechsel, ein letztes Mal.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:10 Mi 30.12.2009
Autor: kappen

Wow. Danke

Ja hmm, wenn du möchtest, guck dir mal unten in der PDF die Aufgabe an: []PDF

Das heißt das ist falsch und das, was ich aufgeschrieben habe ist korrekt?

Oben mit der Basis meinte ich natürlich sowas [mm] B=\{\vektor{1\\0\\0},\vektor{2\\1\\1},\vektor{3\\2\\1}\} [/mm]

Viele Dank für deine Ausführungen unten, werde mir das gleich in Ruhe nochmal angucken. Also waren meine Zweifel auch berechtigt, weil E nie vorkam? Was hätte ich denn da ausgerechnet, wenn ich A auf einen Basisvektor anwende?

Schöne Grüße

Bezug
                                                        
Bezug
Basiswechsel, ein letztes Mal.: Antwort
Status: (Antwort) fertig Status 
Datum: 19:38 Mi 30.12.2009
Autor: angela.h.b.


> Wow. Danke
>  
> Ja hmm, wenn du möchtest, guck dir mal unten in der PDF
> die Aufgabe an:
> []PDF

Hallo,

dort sind die Transformationsmatrizen vertauscht.

Es ist die Matrix [mm] T^B_E [/mm] die Matrix, die so leicht aufzustellen ist und nicht, wie dort bei dem vorgerechneten Beispiel geschrieben, die Matrix [mm] T^B_E. [/mm]
Da hat sich der Florian irgendwie verhauen, ganz oben im Dokument ist es noch richtig erklärt.



> Das heißt das ist falsch und das, was ich aufgeschrieben
> habe ist korrekt?

Dein Ergebnis hast Du ja nicht genannt - aber Du kannst es mit meinem vergleichen.
Ich kann (fast) die Hand dafür ins Feuer legen, daß es richtig ist.


Ich habe mich übrigens, nachdem ich das mal hier im Forum gesehen habe, von den Schreibweisen [mm] M^C_D [/mm] und [mm] T^D_E [/mm] verabschiedet zugunsten der Schreibweisen [mm] _DM_C, _ET_D, [/mm] welche mich nach etwas Gewöhnung entschieden weniger wahnsinnig machen als die andere.

Hierbei stehen rechts, also dort, wo die Vektoren heranmultipliziert werden, die Basen des Startraumes, links die des Zielraumes.

Das ganze funktioniert nun nämlich wie ein Dominospiel, z.B. ist

[mm] _EM_E=_ET_B*_BM_B*_BT_E, [/mm]

(immer gleiche Basen stoßen aneinander)

und wenn man weiß, daß die Transformationsmatrizen, bei denen links die Standardbasis steht, die sind, die so einfach aufzustellen sind, kann man fast nichts mehr falsch machen.

Wenn man mal [mm] _AT_B [/mm] benötigt:  [mm] _AT_B=_AT_E*_ET_B=(_ET_A)^{-1}*_ET_B. [/mm]

Gruß v. Angela


>  
> Oben mit der Basis meinte ich natürlich sowas
> [mm]B=\{\vektor{1\\0\\0},\vektor{2\\1\\1},\vektor{3\\2\\1}\}[/mm]
>  
> Viele Dank für deine Ausführungen unten, werde mir das
> gleich in Ruhe nochmal angucken. Also waren meine Zweifel
> auch berechtigt, weil E nie vorkam? Was hätte ich denn da
> ausgerechnet, wenn ich A auf einen Basisvektor anwende?
>  
> Schöne Grüße


Bezug
                                                                
Bezug
Basiswechsel, ein letztes Mal.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:48 Mi 30.12.2009
Autor: kappen

Hi angela :)

Die andere Schreibweise ist super. Ich werde ausprobieren, was mir eher liegt.

Ich weiß, dass das anders rum erklärt wurde oben, so hab' ichs ja auch berechnet, aber jetzt hatte ich Angst, dass es doch irgendwie nicht passt.

Ich weiß garnicht, wie ich dir für die schier unendlich vielen Antworten, die du mir gegeben hast, bedanken soll...

Fühle mich auf jeden Fall schon sicherer was Matrizen angeht :)

Danke! Schönen Abend noch

Bezug
                                                
Bezug
Basiswechsel, ein letztes Mal.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:51 Do 31.12.2009
Autor: kappen

Hey ich bins nochmal :)

Hab' mir die Geschichte mit dem Bestimmen der Darstellungsmatrix ohne Transformationsmatrizen angeguckt. Was du schreibst sieht logisch aus, aber ich hab jetzt nochmal im Skript nachgeguckt, es wird wirklich die Matrix A zur Basis E mit einem Vektor aus der neuen Basis V multipliziert, und nix anderes habe ich doch auch hier gemacht oder?

ich schreibs nochmal hin:

[mm] A^E_E=\pmat{ 11&-3 \\ 36 & -10 } [/mm]
[mm] v_1=\vektor{1\\3}, v_2=\vektor{1\\4}, V=\pmat{ 1 & 1 \\ 3 & 4 } [/mm]

Dann schreibt er:

[mm] A*v_1=\vektor{2\\6}=a*v_1+b*v_2 [/mm] und als kommentar: "wie kann ich den vektor als Linearkombination von v darstellen?"

Die koeffizienten sind 2 und 0, und die 1. Spalte der Darstellungsmatrix B?!

Vllt ist ja was anderes damit gemeint?

Schöne Grüße und rutscht gut rein später :)

Bezug
                                                        
Bezug
Basiswechsel, ein letztes Mal.: Antwort
Status: (Antwort) fertig Status 
Datum: 15:08 Do 31.12.2009
Autor: angela.h.b.


> Hey ich bins nochmal :)
>  
> Hab' mir die Geschichte mit dem Bestimmen der
> Darstellungsmatrix ohne Transformationsmatrizen angeguckt.
> Was du schreibst sieht logisch aus, aber ich hab jetzt
> nochmal im Skript nachgeguckt, es wird wirklich die Matrix
> A zur Basis E mit einem Vektor aus der neuen Basis V
> multipliziert, und nix anderes habe ich doch auch hier
> gemacht oder?

Hallo,

doch. Du hast gestern (oder so) eine Matrix, welche nur Koordinatenvektoren bzgl. B fressen kann, mit einem Vektor bzgl. der Standardbasis gefüttert. Davon kriegt die Matrix Verdauungsstörungen.

Dein Professor füttert die Matrix, die Vektoren bzgl E frißt und abgibt, mit den Basisvektoren von V in Koordinaten bzgl. E. Alles gut verträglich für den Matrixmagen...

Auch Dir einen guten Rutsch. Und fein nur Bekömmliches essen und trinken...

Gruß v. Angela

>  
> ich schreibs nochmal hin:
>  
> [mm]A^E_E=\pmat{ 11&-3 \\ 36 & -10 }[/mm]
>  [mm]v_1=\vektor{1\\3}, v_2=\vektor{1\\4}, V=\pmat{ 1 & 1 \\ 3 & 4 }[/mm]
>  
> Dann schreibt er:
>  
> [mm]A*v_1=\vektor{2\\6}=a*v_1+b*v_2[/mm] und als kommentar: "wie
> kann ich den vektor als Linearkombination von v
> darstellen?"
>  
> Die koeffizienten sind 2 und 0, und die 1. Spalte der
> Darstellungsmatrix B?!
>  
> Vllt ist ja was anderes damit gemeint?
>  
> Schöne Grüße und rutscht gut rein später :)


Bezug
                                                                
Bezug
Basiswechsel, ein letztes Mal.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:10 Sa 02.01.2010
Autor: kappen

So, frohes neues ;)

Woher weiß ich, dass die Basisvektoren von V bezüglich der Basis E angegeben sind? Also, sie sind es ja wohl, denn ich kann die problemlos als Linearkombination der Einheitsvektoren angeben, ist es das was ich auch bei meiner Geschichte da hätte machen müssen?

Das bedeutet, ich muss meine Abbildungsmatrix bezgl. B mit den Basisvektoren E bezüglich B füttern, also Linearkombinationen daraus erstellen, oder wie habe ich mir das vorzustellen?

Danke =)

Bezug
                                                                        
Bezug
Basiswechsel, ein letztes Mal.: Antwort
Status: (Antwort) fertig Status 
Datum: 08:07 So 03.01.2010
Autor: angela.h.b.


> So, frohes neues ;)
>  
> Woher weiß ich, dass die Basisvektoren von V bezüglich
> der Basis E angegeben sind?

Hallo,

wenn nichts anderes dasteht, sind solche Angeben bzgl der Standardbasis.


> Also, sie sind es ja wohl, denn
> ich kann die problemlos als Linearkombination der
> Einheitsvektoren angeben, ist es das was ich auch bei
> meiner Geschichte da hätte machen müssen?

Ich weiß nicht, was Du meinst.
Sag, was Du willst und mach vor, was Du meinst.
Nur so ist garantiert, daß wir wirklich über dasselbe reden.

>  
> Das bedeutet, ich muss meine Abbildungsmatrix bezgl. B mit
> den Basisvektoren E bezüglich B füttern,

Achso.
Es geht darum, daß Du aus [mm] _BM_B [/mm] die Matrix [mm] _EM_E [/mm] erstellen willst?
Ja, dann stellt am die Basisvektoren von E als Linearkombination der von B dar, multipliziert [mm] _BM_B [/mm] mit dem entsprechenden Koordinatenvektor, erhält als Ergebnis einen Koordinatenvektor bzgl B, welchen man dann wieder in Standardkoordinaten umwandelt.

Gruß v. Angela


also

> Linearkombinationen daraus erstellen, oder wie habe ich mir
> das vorzustellen?
>  
> Danke =)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]