matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenBasiswechsel/Trans.Matrizen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Abbildungen" - Basiswechsel/Trans.Matrizen
Basiswechsel/Trans.Matrizen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basiswechsel/Trans.Matrizen: Tipp | Erklärung
Status: (Frage) beantwortet Status 
Datum: 21:41 Sa 22.03.2014
Autor: Kletteraffe

Aufgabe
(Hauptaufgabe)
Für $n [mm] \geq [/mm] 0$, haben wir den UVR [mm]\mathbb{Q}[t]_n[/mm] des [mm] $\mathbb{Q}$-VR [/mm] der Polynome [mm]\mathbb{Q}[t][/mm],
[mm]\mathbb{Q}[t]_n := \{ p(t) \in \mathbb{Q}[t] : [/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Grad(p(t)) $\leq n \}$.
Wir betrachten den $\mathbb{Q}$-VR [mm]V := \mathbb{Q}[t]_3[/mm] mit der Basis $A = (1, t, [mm] t^2, t^3)$ [/mm] sowie den VR [mm]W := \mathbb{Q}[t]_2[/mm] mit der Basis
[mm]B = (1, t, t^2)[/mm]. Weiterhin betrachten wir die lineare Abildung $$D: V [mm] \rightarrow [/mm] W$$ $$D(p(t)) = p'(t) + 2p''(t).$$
(Aufgabe an der ich arbeite)
Sei $C$ die Basis $(1-t, [mm] t-t^2, t^2, t^3)$ [/mm] für $V$ und sei $D$ die Basis $(1+t, [mm] t+t^2, t^2)$ [/mm] für $W$. Finden Sie invertierbare Matrizen $S [mm] \in \mathbb{Q}^{3 \times 3}$ [/mm] und $T [mm] \in \mathbb{Q}^{4 \times 4}$, [/mm] sodass [mm] $M^C_D [/mm] (D) = S [mm] M^A_B [/mm] (D) T$.

Hallo zusammen,

ich bearbeite gerade meine alte Klausur nach und komme bei dieser Aufgabe nicht weiter. Die Matrix [mm] $M^A_B [/mm] (D)$ habe ich bereits berechnet. Nun dachte ich mir, dass ich einfach [mm] $M^C_A [/mm] (D)$ sowie [mm] $M^B_D [/mm] (D)$ berechne und dann mit [mm] $M^C_D [/mm] (D) = [mm] M^B_D [/mm] (D) [mm] M^A_B [/mm] (D) [mm] M^C_A [/mm] (D)$ fertig bin.

Nun sind [mm] $M^C_A [/mm] (D)$ und [mm] $M^B_D [/mm] (D)$ leider nicht invertierbar.. und die Bearbeitung wurde als falsch angestrichen. (ohne weiteren Kommentar)

Habe ich mich verrechnet? (also ist zumindest die Vorgehensweise richtig?)

Oder geht man generell anders an solche Aufgaben heran?

Vielen Dank schonmal! :)

        
Bezug
Basiswechsel/Trans.Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:06 Sa 22.03.2014
Autor: Sax

Hi,

S und T sind Basiswechselmatrizen, also Darstellungen der Identischen Abbildung I von W bzw. V bezüglich verschiedener Basen, sie haben mit D gar nichts zu tun.
Dabei rechnet T die Koordinaten eines Polynoms p aus V bzgl. der Basis C in solche bzgl. der Basis A um. Damit kann dann $ [mm] M^A_B [/mm] (D) $ weiterarbeiten und liefert die Koordinaten von D(p) bzgl der Basis B. Diese werden schließlich von S in Koordinaten bzgl. der Basis D umgerechnet.
Es ist also  $ T = [mm] M^C_A (I_4) [/mm] $ und $ S = [mm] M^B_D (I_3) [/mm] $

Gruß Sax.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]