matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenBasiswechsel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Abbildungen" - Basiswechsel
Basiswechsel < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basiswechsel: idee
Status: (Frage) beantwortet Status 
Datum: 17:12 So 11.04.2010
Autor: grafzahl123

Aufgabe
geg. [mm] B_1 [/mm] = [mm] \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix} [/mm] ,
[mm] B_2 [/mm] =  [mm] \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} [/mm] und                               A= [mm] \begin{pmatrix} 0 & 1 & -1 \\ 1 & -1 & 2 \end{pmatrix} [/mm]
gesucht: [mm] A_1 [/mm] = basiswechsel von [mm] B_1 [/mm] nach [mm] B_2 [/mm] von A

[mm] A_1 [/mm] = [mm] B_2^-1 [/mm] * A * [mm] B_1 [/mm]  müsste ja eigentlich die gleichung lauten um die aufgabe zu lösen (steht zumindest so in der lösung). der rechenweg is jetzt nich so wichtig, weil ich ja die lösung hab. ich versteh nur nich warum ich die inverse von [mm] B_2 [/mm] bilden muss um die aufgabe zu lösen.
vielleicht kann mir das einer erklären.

danke schon mal im voraus für die hilfe und schönes restwochenende.

ich habe diese frage in keinem anderen forum gestellt!

        
Bezug
Basiswechsel: Antwort
Status: (Antwort) fertig Status 
Datum: 18:12 So 11.04.2010
Autor: Blech

Hi,

wenn [mm] $x=\pmat{x_1\\x_2\\ x_3}$ [/mm] ein Vektor zur Basis [mm] $B_1$ [/mm] ist, dann ist doch $B_1x$ der gleiche Vektor dargestellt zur euklidischen Basis.

Ich hab jetzt A, das einen Vektor zur euklidischen Basis im [mm] $\IR^3$ [/mm] in einen Vektor zur euklidischen Basis im [mm] $\IR^2$ [/mm] verwandelt.

[mm] $\Rightarrow\ [/mm] y:=AB_1x$ wandelt zuerst x in einen Vektor zur euklidischen Basis [mm] ($B_1*x$) [/mm] und wendet dann die lineare Abb A darauf an, um ihn in einen Vektor zur euklidischen Basis im [mm] $\IR^2$ [/mm] zu verwandeln ($y=A*(B_1x)$).

Jetzt hab ich y, und ich will das in einen Vektor zur Basis [mm] $B_2$ [/mm] verwandeln, nennen wir ihn z.
Sagen wir, wir kennen z, dann wandelt $B_2z$ ihn doch wieder zurück in einen Vektor zur euklidischen Basis, analog zu x oben.

Die Darstellung eines Vektors zu einer gegebenen Basis ist eindeutig, also gilt $y=B_2z$, und damit
$y=B_2z\ [mm] \gdw\ B_2^{-1}y=z$ [/mm]
[mm] $\Rightarrow\ z=\underbrace{B_2^{-1}AB_1}_{=:A_1}x$ [/mm]

ciao
Stefan



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]