matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraBasiswechsel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Basiswechsel
Basiswechsel < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basiswechsel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:29 Mo 12.02.2007
Autor: taikobo

Aufgabe
Im [mm] \IR² [/mm] mit der Standardbasis E={ [mm] e_{1}, e_{2}} [/mm] sin zwei weitere Basis A= [mm] {a_{1}, a_{2}} [/mm] und [mm] B={b_{1}, b_{2}} [/mm] mit
[mm] a_{1}= e_{1}+2e_{2}, a_{2}=2e_{1}+3e_{2}, b_{1}=3e_{1}+e_{2}, b_{2}=4e_{1}+2e_{2} [/mm]
gegeben
Der lineare Operator T: [mm] \IR²\to\IR² [/mm] habe dieBasis A  die Matrix
[mm] T_{A}=\pmat{ 3 & 5\\ 4 & 3 } [/mm]
Berechnen Sie die Matrix [mm] T_{B} [/mm] des Operators T in der Basis B.

Wie bekommt man den Basiswechsel von A nach B hin  und daraus mit dem Opeartor [mm] T_{A} [/mm] den Operator [mm] T_{B}, [/mm] danke.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Basiswechsel: Antwort
Status: (Antwort) fertig Status 
Datum: 18:53 Mo 12.02.2007
Autor: Event_Horizon

Hallo!

Wenn du einen Vektor [mm] \vec{x}_B [/mm] in der Basis B hast, mußt du ihn erst in einen Vektor der Basis A umwandeln, bevor du die Matrix auf ihn anwenden kannst. Hast du das getan, hast du ja wieder einen vektor in der Basis A, der muß zurück in die Basis B.


Also:

Vektor in B:  [mm] \vec{x}_B [/mm]

Vektor in A: [mm] $\vec{x}_A=M_{B \mapsto A}\vec{x}_B$ [/mm]

Multipliziert mit T in A: [mm] $\vec{y}_A=T_A\vec{x}_A=T_A*M_{B \mapsto A}\vec{x}_B$ [/mm]

Und dieses Ergebnis wieder in B transformiert: [mm] $\vec{y}_B=M_{A \mapsto B}*T_A*M_{B \mapsto A}\vec{x}_B=T_B \vec x_B$ [/mm]

Du benötigst also die beiden Abbildungen zwischen den Basen. Danach mußt du die drei Matrizen einfach miteinander multiplizieren!



Bezug
        
Bezug
Basiswechsel: Antwort
Status: (Antwort) fertig Status 
Datum: 19:06 Mo 12.02.2007
Autor: DaMenge

Hi,


Event_Horizon hat ja schon geschrieben, wie die MBTransformationsformel (<- click mich) anzuwenden ist, jetzt fehlt nur noch, wie man die MBTransformationsmatrix von B nach A (und die andere in umgekehrter Richtung) bestimmt.

Dies ist eine MBKoordinatentransformation (<- wieder clicken)
es ist also: $ [mm] K_A^B=(M_A)^{-1}\cdot{}M_B [/mm] $

wobei [mm] $K_A^B$ [/mm] die gesuchte Trafomatrix von B nach A ,
[mm] $M_A$ [/mm] (bzw [mm] $M_B$) [/mm] die Matrizen, die entstehen, wenn man die Vektoren von A (bzw von B) in darstellung bzgl E als Spaltenvektoren in eine Matrix schreibt.

also nur schnell [mm] $K_A^B$ [/mm] und [mm] $K_B^A$ [/mm] ausrechnen und dann die Transformationsformel verwenden :
[mm] $T_B=K_B^A [/mm] * [mm] T_A [/mm] * [mm] K_A^B$ [/mm]
(wie ja schon beschrieben wurde)

viele Grüße
DaMenge

Bezug
                
Bezug
Basiswechsel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:15 Mo 12.02.2007
Autor: taikobo

danke schön für eure Hilfe


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]