matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenBasiswechsel- Matrixdarstellug
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Abbildungen" - Basiswechsel- Matrixdarstellug
Basiswechsel- Matrixdarstellug < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basiswechsel- Matrixdarstellug: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 18:43 Mi 14.01.2009
Autor: uniklu

Aufgabe
a) Gib für den Operator T:T(x,yz) = (2x + y + 2z, x + 4y + 4z, -2x - 3y - 4z) alle Eigenwerte und eine Basis für jeden Eigenraum

b) Die drei erhaltenen l.u. EIgenvektoren bilden eine Basis [mm] \overline{B} [/mm] des [mm] \IR^3. [/mm] Ermittle die Matrixdarstellung von T bezüglich der Basis [mm] \overline{B} [/mm]

Hallo!

Ich habe obige Aufgabe zu lösen.
Punkt a) ist kein Problem. Mein Ergebnis für die Basis ist:

[mm] \overline{B} \{ \vektor{0 \\ -2 \\ 1}, \vektor{-1 \\ -1 \\ 1}, \vektor{-3 \\ -5 \\ 7}\} [/mm]

Ich habe hier Probleme bei der Durchführung - ich kenne den Algorithmus leider nicht und verstehe das ganze nicht komplett.

Also ich weiß, dass T = [mm] \pmat{ 2 & 1 & 2 \\ 1 & 4 & 4 \\ -2 & -3 & -4 } [/mm] ist, laut angabe.
Ich gehe mal davon aus, dass diese Matrix für die Standardbasis gilt also (1,0,0),(0,1,0),(0,0,1).
Jetzt habe ich hier ein Diagramm gefunden, das einen Basiswechsel zeigt. Leider kann ich damit nicht viel anfangen - habe noch nichts in diese Richtung gemacht.

Bitte um Erklärung und vielen Dank für die Geduld!

mfg

        
Bezug
Basiswechsel- Matrixdarstellug: Antwort
Status: (Antwort) fertig Status 
Datum: 19:00 Mi 14.01.2009
Autor: angela.h.b.


> a) Gib für den Operator T:T(x,yz) = (2x + y + 2z, x + 4y +
> 4z, -2x - 3y - 4z) alle Eigenwerte und eine Basis für jeden
> Eigenraum
>  
> b) Die drei erhaltenen l.u. EIgenvektoren bilden eine Basis
> [mm]\overline{B}[/mm] des [mm]\IR^3.[/mm] Ermittle die Matrixdarstellung von
> T bezüglich der Basis [mm]\overline{B}[/mm]
>  Hallo!
>  
> Ich habe obige Aufgabe zu lösen.
>  Punkt a) ist kein Problem. Mein Ergebnis für die Basis
> ist:
>  
> [mm]\overline{B} \{ \vektor{0 \\ -2 \\ 1}, \vektor{-1 \\ -1 \\ 1}, \vektor{-3 \\ -5 \\ 7}\}[/mm]

Hallo,

ich hab' das nicht nachgerechnet.

>  
> Ich habe hier Probleme bei der Durchführung - ich kenne den
> Algorithmus leider nicht und verstehe das ganze nicht
> komplett.
>  
> Also ich weiß, dass T = [mm]\pmat{ 2 & 1 & 2 \\ 1 & 4 & 4 \\ -2 & -3 & -4 }[/mm]
> ist, laut angabe.
>  Ich gehe mal davon aus, dass diese Matrix für die
> Standardbasis gilt also (1,0,0),(0,1,0),(0,0,1).

Ja. das ist die darstellende Matrix der Abbildung T bzgl. der Standardbasis E. In den Spalten stehen also die Bilder dieser Basisvektoren in Koordinaten bzgl der Standardbasis.

Du sollst nun die darstellende Matrix der Abbildung bzgl der Basis [mm] \overline{B} [/mm] angeben. Sie enthält in den Spalten die Bilder der Basisvektoren von [mm] \overline{B} [/mm] in Koordinaten bzgl [mm] \overline{B}. [/mm]

Damit hast Du schon eine Berechnungsmöglichkeit:

berechne die Funktionswerte der Basisvektoren, schreibe das Ergebnis als Linearkombination diese Vektoren, und stapele die jeweiligen Koeffizienten als Spalte in die Matrix.

Zweite Möglichkeit unter Verwendung von T:

Die Matrix  [mm] _ET_{\overline{B}}, [/mm] die in den Spalten die Vektoren von [mm] \overline{B} [/mm] enthält, transformiert Vektoren, die in Koordinaten bzgl [mm] \overline{B} [/mm] gegeben sind in solche bzgl. E,

ihr Inverses tut das umgekehrte.

Die darstellende Matrix [mm] _\overline{B}T_\overline{B} [/mm] erhältst Du so:

[mm] _{\overline{B}}T_{\overline{B}} =(_ET_{\overline{B}})^{-1}*T*_ET_{\overline{B}}, [/mm]

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]