matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieBasisvektoren im Gitter
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Topologie und Geometrie" - Basisvektoren im Gitter
Basisvektoren im Gitter < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basisvektoren im Gitter: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:36 Do 29.01.2015
Autor: senmeis

Hi,

gegeben sei eine 3x5 Matrix A. Ein 3D Gitter (Lattice) ist gestaltet mit X = [mm] (AA^{T})^{-1} [/mm] (3x3 symmetrische Matrix). Es ist bekannt: The lattice (X) is spanned by the rows of A. In diesem Gitter sind 3 Basisvektoren vorhanden. Gesucht sind 3 Winkel zwischen diesen 3 Basisvektoren. Ist es korrekt mit

[mm] \delta12 [/mm] = [mm] arccos(X12/\wurzel[2]{(X11X22)}) [/mm]
[mm] \delta13 [/mm] = [mm] arccos(X13/\wurzel[2]{(X11X33)}) [/mm]
[mm] \delta23 [/mm] = [mm] arccos(X23/\wurzel[2]{(X22X33)}) [/mm]

Gruss
Senmeis


        
Bezug
Basisvektoren im Gitter: Antwort
Status: (Antwort) fertig Status 
Datum: 15:19 Do 29.01.2015
Autor: fred97


> Hi,
>  
> gegeben sei eine 3x5 Matrix A. Ein 3D Gitter (Lattice) ist
> gestaltet mit X = [mm](AA^{T})^{-1}[/mm] (3x3 symmetrische Matrix).
> Es ist bekannt: The lattice (X) is spanned by the rows of
> A. In diesem Gitter sind 3 Basisvektoren vorhanden. Gesucht
> sind 3 Winkel zwischen diesen 3 Basisvektoren. Ist es
> korrekt mit
>  
> [mm]\delta12[/mm] = [mm]arccos(X12/\wurzel[2]{(X11X22)})[/mm]
>  [mm]\delta13[/mm] = [mm]arccos(X13/\wurzel[2]{(X11X33)})[/mm]
>  [mm]\delta23[/mm] = [mm]arccos(X23/\wurzel[2]{(X22X33)})[/mm]
>  
> Gruss
>  Senmeis
>  

Ich vermute mal, dass die [mm] X_{ij} [/mm]  (oder Xij ?) die Einträge in der Matrix $ [mm] (AA^{T})^{-1} [/mm] $ sind.

Dennoch sehe ich nicht, was Deine obigen [mm] \deltaij [/mm] mit Winkeln zwischen den Zeilen- (oder Spalten-) vektoren von $ [mm] (AA^{T})^{-1} [/mm] $ zu tun haben sollen.

http://matheguru.com/lineare-algebra/219-winkel-zwischen-zwei-vektoren.html

FRED

Bezug
                
Bezug
Basisvektoren im Gitter: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:55 Fr 30.01.2015
Autor: senmeis

A = [mm] \pmat{ -0.1420 & 0.1173 & 0.1296 & -0.1049\\0.0926 & -0.1852 & 0.1111 & -0.0185 } [/mm]
X = A [mm] *A^{T} [/mm] = [mm] \pmat{ 0.0617 & -0.0185 \\ -0.0185 & 0.0556 } [/mm] (Das Gitter)

Folgende Aussage wird gegeben:

[mm] X_{11} [/mm] = 0.0617: [mm] |Gittervektor1|^{2} [/mm]
[mm] X_{22} [/mm] = 0.0556: [mm] |Gittervektor2|^{2} [/mm]
[mm] Arccos(X_{12}/\wurzel[2]{(X_{11}X_{22})}) [/mm] = [mm] 108^{\circ}: [/mm] Winkel zwischen Gittervektor1 und Gittervektor2

Dies gilt für 2D. Ich will dieses einfach auf 3D erweitern.

Senmeis


Bezug
                        
Bezug
Basisvektoren im Gitter: Antwort
Status: (Antwort) fertig Status 
Datum: 19:01 Fr 30.01.2015
Autor: leduart

Hallo
oben stand  :The lattice (X) is spanned by the rows of A.
jetzt nennst du X_11 einen Gittervektor? in 2d sollte der doch 2 Komponenten haben.?
ist dein Satz :The lattice (X) is spanned by the rows of A. richtig, oder müsste da rows of X stehen?
Kannst du dazu was sagen?
Gruß leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]