matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraBasistransformation
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Basistransformation
Basistransformation < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basistransformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 03:47 Mi 28.07.2004
Autor: kay

Hallo, ich habe eine Frage zu einer Basistransformation, leider habe ich die Erklärungen die ich dazu gefunden habe nicht verstanden. :-(

Folgende Situation:

Es ist eine Matrix in der üblichen Basis e1, e2, e3 gegeben und diese Matrix soll ich in der Orthonormalbasis b1, b2, b3 darstellen.

Wie gehe ich da vor?

Lautet das Ergebnis:

X = (b1 b2 [mm] b3)^t [/mm] * A

oder

X = (b1 b2 [mm] b3)^t [/mm] * A * (b1 b2 b3)


Ich hoffe ihr versteht was ich meine und könnt mir weiterhelfen.


Ich habe diese Frage in keinem weiteren Forum gestellt.


        
Bezug
Basistransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 08:52 Mi 28.07.2004
Autor: Gnometech

Hallo Kay!

Die Antwort auf Deine Frage ist: das hängt davon ab, was von der Matrix A dargestellt wird.

Matrizen sind dafür da, Informationen über komplexe Objekte (meistens Abbildungen) übersichtlich aufzuschreiben. Das Standardbeispiel sind lineare Abbildungen. Das Problem: gegeben ist eine lineare Abbildung $f: [mm] \IR^n \to \IR^n [/mm] $. Wie kann man auf übersichtliche Weise beschreiben, was diese Abbildung genau tut?

Die erste Überlegung: wenn man eine Basis des [mm] $\IR^n$ [/mm] gegeben hat (z.B. [mm] $e_1, \ldots [/mm] , [mm] e_n$), [/mm] dann reicht es zu wissen, was die Abbildung mit den Basisvektoren macht, aufgrund der Linearität. Für einen beliebigen Vektor $v [mm] \in \IR^n$ [/mm] gibt es ja Skalare [mm] $\lambda_1, \ldots, \lambda_n \in \IR$, [/mm] so dass

$ v = [mm] \limits\sum_{i=1}^n \lambda_i e_i$ [/mm]

Und daraus folgt:

$ f(v) = f [mm] (\limits\sum_{i=1}^n \lambda_i e_i) [/mm] = [mm] \limits\sum_{i=1}^n \lambda_i f(e_i)$ [/mm]

Wenn man also die [mm] $f(e_i)$ [/mm] kennt, dann weiß man, was $f$ mit jedem Vektor tut.

Und jetzt kommt der Trick: diese [mm] $f(e_i)$ [/mm] haben ja als Elemente des [mm] $\IR^n$ [/mm] wieder eine Darstellung in der gleichen Basis! Und diese Koeffizienten schreibt man in die Matrix, so dass die Spalten der Matrix den Bildern der Basisvektoren entsprechen.

So muß man sich die darstellende Matrix einer linearen Abbildung vorstellen: sie sagt uns, auf welche Weise die Basis des Quellraumes in der Basis des Zielraumes (in unserem Fall beides Mal [mm] $\IR^n$) [/mm] ausgedrückt werden kann.

Die nächste Frage, die man sich stellt... inwieweit hängt das von der eingangs gewählten Basis ab? Leider sehr. Aber zum Glück kommt nun wieder die Theorie ins Spiel. Wenn man eine zweite Basis gegeben hat, kann man sich die sogenannte "Matrix des Basiswechsels" anschauen, das ist genau diejenige Matrix, die man erhält, wenn man eine Abbildung baut, die Basis 1 auf Basis 2 abbildet (ist dann automatisch ein Isomorphismus, weil eine Basis auf eine Basis geht) und die alte Matrix damit "konjugiert". Das ist nur ein hochtrabender Ausdruck für die Formel:

$ [mm] B:=P^{-1}AP$ [/mm]

Dabei ist $A$ die alte Matrix, $B$ die neue und $P$ ist die Matrix des Basiswechsels. Allerdings gilt dies nur, wenn $A$ die Matrix einer linearen Abbildung ist!

Ist $A$ nämlich die Matrix einer Bilinearform, geht die Regel etwas anders. Dann erhält man die neue Matrix folgendermaßen:

$B = P^tAP$

Zu guter Letzt: und wie bestimmt man jetzt das $P$? Naja, es soll eine Matrix des Basiswechsels sein, also muß man die neue Basis durch die alte ausdrücken und die Koeffizienten in die Spalten schreiben. Ist die "alte" Basia aber wie in Deinem Beispiel [mm] $e_1, e_2, e_3$, [/mm] dann sind die neuen Vektoren [mm] $b_1,b_2,b_3$ [/mm] schon in der richtigen Basis ausgedrückt und die Matrix $P$ ist dann schlicht

$P = [mm] (b_1, b_2, b_3)$ [/mm]

Und zu guter Letzt noch die gute Nachricht: da die neue Basis eine Orthonormalbasis ist, ist auch die Matrix $P$ orthogonal, also folgt für diesen Fall [mm] $P^t [/mm] = [mm] P^{-1}$. [/mm] Und dies entfernt nicht nur den obigen Unterschied, sondern erleichtert auch das Invertieren von $P$ enorm... denn das ist im Allgemeinen schwerer, als das Transponieren.

Also, langer Rede kurzer Sinn, das zweite ist korrekt und ich hoffe meine weitschweifenden Ausführungen haben ein wenig zum Verständnis der ganzen Maschinerie dahinter beigetragen.

Schönen Tag noch!

Lars

Bezug
                
Bezug
Basistransformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:46 Mi 28.07.2004
Autor: kay

Hallo Lars,

vielen Dank für deine schnell Antwort, jetzt ist mir die ganze Sache etwas klarer geworden. :-)


Ich habe noch eine kleine Verständnisfrage zu der Basistransformation:

Gegeben sagen wir mal ist eine Matrix A im e1, e2, e3 die eine Drehung ausführt. Ich drehe nun mit Hilfe dieser Matrix die orthonormalen Basisvektoren b1, b2, b3.

Diese sind ja dann im e1, e2, e3 nach der Drehung dargestellt, oder?

Wenn ich diese nun im b1, b2, b3 wieder darstellen soll, kann ich das doch nach folgender "Formel" für jeden Vektor machen:

(<x,b1>)
(<x,b2>)
(<x,b3>)b1,b2,b3    

x steht hierbei für das Ergebnis der Drehung des entsprechnenden Vektors.

Wenn ich nun wieder die Matrix A im b1, b2, b3 darstellen soll, sind das nicht einfach diese Vektoren die ich dort berechnet habe im b1, b2, b3 oder muss ich dann noch etwas umrechnen?

Wenn ich diese Matrix A direkt mit der Formel berechne (X = [mm] B^t [/mm] * A * B) bekomme ich ein leicht anderes Ergebnis raus, ein Vektor ist unterschiedlich. :-/

EDIT: Ich habe meinen Fehler gefunden und jetzt kommt tatsächlich die Matrix im b1, b2, b3 raus wenn ich diese mit diesen Vektoren schreibe. :)

Bezug
                        
Bezug
Basistransformation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:06 Mi 28.07.2004
Autor: Gnometech

Das ist immer toll, wenn sich die Dinge von selbst klaeren. :-) Ich komme da auch oft durcheinander, wenn man die gleichen Vektoren in verschiedenen Basen darstellt und das hin und her umrechnet... aber im Grunde ist ja alles logisch. ;-)

Schoenen Tag noch,

Lars

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]