Basis von ker(f) und im(f) < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:51 Do 03.01.2008 | Autor: | Schroet |
Aufgabe | Sei [mm] A=\pmat{ 1 & 2 \\ 0 & 1 } \in M_2(\IR), [/mm] und sei f: [mm] M_2(\IR) \to M_2(\IR) [/mm] die Abbildung, die durch f(X)=AX - XA definiert ist.
a) Zeige, dass f [mm] \IR-linear [/mm] ist.
b) Bestimme eine Basis von Kern(f) und Bild(f)
c) Wähle eine Basis B von [mm] M_2(\IR\subset), [/mm] und berechne die Matrix [mm] C_B(f) [/mm] von f bezüglich der Basis B. |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Guten Abend!
Ich habe kleine Schwierigkeiten bezüglich dieser Aufgabe. Und zwar habe ich a) so gemacht:
a)
Zz: f(x + y)=f(x) + f(y) und f(ax)=af(x)
f(X)+f(Y)=AX - XA + AY - YA=AX + AY - XA - YA=f(X + Y)
f(aX)=AaX - aXA=aAx - aXA=a(AX - XA)=af(X)
Bei komme ich nicht weiter und zwar habe ich volgende Überlegung:
b)
f(X)=AX - XA
also
sei [mm] X\in\M_2(\IR) [/mm] mit [mm] X=\pmat{x_1&x_3\\x_2&x_4}
[/mm]
[mm] \pmat{1&2 \\ 0&1}\cdot\ \pmat{x_1&x_3\\x_2&x_4} [/mm] - [mm] \pmat{x_1&x_3\\x_2&x_4}\cdot\ \pmat{1&32 \\ 0&1} [/mm] = [mm] \pmat{(x_1+2x_2)&(x_3+2x_4)\\x_2&x_4} [/mm] - [mm] \pmat{x1&(2x_1+x_3)\\x_2&(2x_2+x_4)} [/mm] =
[mm] \pmat{2x_2&(2x_4-2x_1)\\0&2x_2}
[/mm]
soweit sogut. Nun weiß ich nicht wie ich mit dieser Matrix weiter arbeiten soll um Basis des Kern(f) und Bild(f) zu bestimmen.
Frage: Bei Basis von Kern(f) muss ich eine Matrix finden bei der die Multiplikation die Nullmatrix ergibt? Oder wie muss ich da vorgehen?
Bei Basis des Bildes in diesem Fall komme ich irgendwie nicht weiter. Es wäre nett, wenn mir jemand Tipp, Ansatz etc geben könnte damit ich weiß, in welche Richtung ich mich bewegen muss.
Vielen Dank.
mfg
Schroet
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 05:47 Sa 05.01.2008 | Autor: | Zneques |
Hi,
Also a) ist ok.
Bei b)
[mm] f(X)=f(\pmat{x_1&x_3\\x_2&x_4})=\pmat{1&2 \\ 0&1}\cdot\ \pmat{x_1&x_3\\x_2&x_4}-\pmat{x_1&x_3\\x_2&x_4}\cdot\ \pmat{1&2 \\ 0&1}=\pmat{(x_1+2x_2)&(x_3+2x_4)\\x_2&x_4}-\pmat{x1&(2x_1+x_3)\\x_2&(2x_2+x_4)} =\pmat{2x_2&(2x_4-2x_1)\\0&2x_2}
[/mm]
[mm] =\pmat{2x_2&0\\0&2x_2}+\pmat{0&(2x_4-2x_1)\\0&0}=2x_2*\pmat{1&0\\0&1}+(2x_4-2x_1)*\pmat{0&1\\0&0}
[/mm]
[mm] =a*\pmat{1&0\\0&1}+b*\pmat{0&1\\0&0}
[/mm]
Damit hast du deine Basis des Bildes.
Kern :
f(X)=0
[mm] \Rightarrow \pmat{2x_2&(2x_4-2x_1)\\0&2x_2}=0
[/mm]
[mm] \Rightarrow X=\pmat{x_1&x_3\\0&x_1} [/mm] (muss man natürlich noch begründen)
Ciao.
|
|
|
|