matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenBasis von ker(f) und im(f)
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Basis von ker(f) und im(f)
Basis von ker(f) und im(f) < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis von ker(f) und im(f): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:51 Do 03.01.2008
Autor: Schroet

Aufgabe
Sei [mm] A=\pmat{ 1 & 2 \\ 0 & 1 } \in M_2(\IR), [/mm] und sei f: [mm] M_2(\IR) \to M_2(\IR) [/mm] die Abbildung, die durch f(X)=AX - XA definiert ist.

a) Zeige, dass f [mm] \IR-linear [/mm] ist.
b) Bestimme eine Basis von Kern(f) und Bild(f)
c) Wähle eine Basis B von [mm] M_2(\IR\subset), [/mm] und berechne die Matrix [mm] C_B(f) [/mm] von f bezüglich der Basis B.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Guten Abend!
Ich habe kleine Schwierigkeiten bezüglich dieser Aufgabe. Und zwar habe ich a) so gemacht:

a)

Zz: f(x + y)=f(x) + f(y) und f(ax)=af(x)
f(X)+f(Y)=AX - XA + AY - YA=AX + AY - XA - YA=f(X + Y)
f(aX)=AaX - aXA=aAx - aXA=a(AX - XA)=af(X)

Bei komme ich nicht weiter und zwar habe ich volgende Überlegung:

b)

f(X)=AX - XA
also
sei [mm] X\in\M_2(\IR) [/mm] mit [mm] X=\pmat{x_1&x_3\\x_2&x_4} [/mm]
[mm] \pmat{1&2 \\ 0&1}\cdot\ \pmat{x_1&x_3\\x_2&x_4} [/mm] - [mm] \pmat{x_1&x_3\\x_2&x_4}\cdot\ \pmat{1&32 \\ 0&1} [/mm] = [mm] \pmat{(x_1+2x_2)&(x_3+2x_4)\\x_2&x_4} [/mm] - [mm] \pmat{x1&(2x_1+x_3)\\x_2&(2x_2+x_4)} [/mm] =

[mm] \pmat{2x_2&(2x_4-2x_1)\\0&2x_2} [/mm]

soweit sogut. Nun weiß ich nicht wie ich mit dieser Matrix weiter arbeiten soll um Basis des Kern(f) und Bild(f) zu bestimmen.
Frage: Bei Basis von Kern(f) muss ich eine Matrix finden bei der die Multiplikation die Nullmatrix ergibt? Oder wie muss ich da vorgehen?
Bei Basis des Bildes in diesem Fall komme ich irgendwie nicht weiter. Es wäre nett, wenn mir jemand Tipp, Ansatz etc geben könnte damit ich weiß, in welche Richtung ich mich bewegen muss.

Vielen Dank.

mfg


Schroet

        
Bezug
Basis von ker(f) und im(f): Antwort
Status: (Antwort) fertig Status 
Datum: 05:47 Sa 05.01.2008
Autor: Zneques

Hi,

Also a) ist ok.

Bei b)
[mm] f(X)=f(\pmat{x_1&x_3\\x_2&x_4})=\pmat{1&2 \\ 0&1}\cdot\ \pmat{x_1&x_3\\x_2&x_4}-\pmat{x_1&x_3\\x_2&x_4}\cdot\ \pmat{1&2 \\ 0&1}=\pmat{(x_1+2x_2)&(x_3+2x_4)\\x_2&x_4}-\pmat{x1&(2x_1+x_3)\\x_2&(2x_2+x_4)} =\pmat{2x_2&(2x_4-2x_1)\\0&2x_2} [/mm]
[mm] =\pmat{2x_2&0\\0&2x_2}+\pmat{0&(2x_4-2x_1)\\0&0}=2x_2*\pmat{1&0\\0&1}+(2x_4-2x_1)*\pmat{0&1\\0&0} [/mm]
[mm] =a*\pmat{1&0\\0&1}+b*\pmat{0&1\\0&0} [/mm]
Damit hast du deine Basis des Bildes.
Kern :
f(X)=0  
[mm] \Rightarrow \pmat{2x_2&(2x_4-2x_1)\\0&2x_2}=0 [/mm]
[mm] \Rightarrow X=\pmat{x_1&x_3\\0&x_1} [/mm] (muss man natürlich noch begründen)


Ciao.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]