matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenBasis von Vektoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Reelle Analysis mehrerer Veränderlichen" - Basis von Vektoren
Basis von Vektoren < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis von Vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:14 Do 19.11.2009
Autor: Mathegirl

Aufgabe
[mm] {b_1,...,b_n} [/mm] ist eine Basis des n-dimensionalen K-Vektorraumes V. Welche [mm] x\in [/mm] V haben die Eigenschaft , dass [mm] {b_1,...,b_n,x} \{b_i} [/mm] für i=1,...,n eine Basis von V ist?  

wie zeigt man sowas? mich irritiert auch das x ein wenig.  In Summenschreibweise könnte man das formulieren, aber das darf ich definitiv nicht!
Vielleicht erklärt es mir jemand idiotensicher Stück für Stück und am besten ganz ausführlich... möchte es verstehen!

Mathegirl

        
Bezug
Basis von Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 17:35 Do 19.11.2009
Autor: leduart

Hallo
Du hast ja einen deiner [mm] b_n [/mm] weggelassen, und dafür nun x dazugenommen.
also ist es sicher richtig, für [mm] x=b_i [/mm]
wie ist es mit [mm] x=b_i+b_1? (i\ne [/mm] 1)  oder [mm] x=b_i+b_1+b_2 [/mm] usw. wie mit anderen x?
ordne sie einfach so um, dass i=n ist und dann überleg, welche x du nehmen kannst um die n-1 b die du noch hast zu einer Basis zu vervollständigen.
Wenn dus nicht gleich siehst, machs erstmal nur 3 dimensional.
Gruss leduart

Bezug
                
Bezug
Basis von Vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:32 Do 19.11.2009
Autor: Mathegirl

so habe ich das ja gedacht, dass ich die [mm] b_i [/mm] somit ersetzen kann..aber ich komme mit den ganzen ausdrucksweisen/formulirungen nicht klar.. ich habe sowieso schwierigkeiten mit der vektorrechnung. sehr große sogar! aber ich komme erst am Wochenende dazu, mich ausgiebig damit zu beschäftigen. Morgen früh muss ich das übungsblatt abgeben und so schnell schaffe ich es nicht alles von der Vektorrechnung aufzuarbeiten :(

Bezug
                        
Bezug
Basis von Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 22:30 Do 19.11.2009
Autor: leduart

Hallo
Da du gar nicht sagst, was du überlegt hast, luft das ja drauf raus, dass wir ein Übungsblatt machen? Aber das tut unser forum nie. Es ist leider so, dass du nicht die einzige bist, die am Tag vor der Abgabe noch gar nix hat.
Such dir ne Gruppe, mit der du zusammenarbeitest, viele ein bischen Wissen ergeben oft ne ganze Menge Wissen. Notfalls kann man dann mal eine oder die ander Aufgabe nicht selbständig lösen sondern lässt sie sich erklären.(und schreibt ab)  
es ist wirklich sehr wichtig für dich, Mitstudenten zu finden und in Gruppen - nicht mehr als  3 bis 4 zusammenzuarbeiten.
versuch das bald, dann ist eine Übung am Anfang, von der man nur wenig hat, nicht so schlimm.
Und nie einfach vor Aufgaben sitzen, sonder rumprobieren, sich zwingen, auch kleine Ideen aufzuschreiben.
immer Definitionen sich wieder klar machen.
Und wenn du uns Fragen stellst möglichst konkret.
mit (b1,b2,b3) als Basis, solltest du leicht erst mal alle x finden, so dass b1,b2,x wieder ne Basis ist.
Das geht schon einfach mit probieren, den soviel Kombinationen von den 3 bs gibts ja gar nicht.
dann durchschaust du das system und kannsts mit n statt 3.
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]