matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeBasis von UVR bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Moduln und Vektorräume" - Basis von UVR bestimmen
Basis von UVR bestimmen < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis von UVR bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:35 Mo 12.05.2014
Autor: Avinu

Aufgabe
Es seien ein Körper K und eine Menge I gegeben. Wir setzen [mm] K^{(I)} [/mm] := { x [mm] \in K^I [/mm] | {i [mm] \in [/mm] I | [mm] x_i \not= [/mm] 0} ist endlich}. Zeigen Sie, dass [mm] K^{(I)} [/mm] ein K-Untervektorraum von [mm] K^{I} [/mm] ist und bestimmen Sie eine Basis von [mm] K^{(I)}. [/mm]

Hallo zusammen,

den Beweis, dass es sich um einen UVR handelt habe ich denke ich hin bekommen, das schien mir nicht so kompliziert. Allerdings weiß ich nicht so recht, wie ich vorgehen soll, um eine Basis zu bestimmen.

Ich weiß, dass eine Familie s in V dann eine Basis ist, wenn die Abbildung [mm] f_s [/mm] : [mm] K^{(I)} \to [/mm] V, a [mm] \mapsto \summe_{i \in I} a_i s_i [/mm] bijektiv ist. Allerdings weiß ich nicht, wie ich das anwenden sollte.

Kann mir jemand von euch einen Tipp für einen Ansatz geben?

Vielen Dank und schöne Grüße,
Avinu

        
Bezug
Basis von UVR bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:43 Mo 12.05.2014
Autor: MaslanyFanclub

Hallo,

Tipp: Eine Basis ist unendlich-dimensional und recht einfach hinzuschreiben.

Bezug
        
Bezug
Basis von UVR bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:25 Mi 14.05.2014
Autor: fred97


> Es seien ein Körper K und eine Menge I gegeben. Wir setzen
> [mm]K^{(I)}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

:= { x [mm]\in K^I[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

| {i [mm]\in[/mm] I | [mm]x_i \not=[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

0} ist

> endlich}. Zeigen Sie, dass [mm]K^{(I)}[/mm] ein K-Untervektorraum
> von [mm]K^{I}[/mm] ist und bestimmen Sie eine Basis von [mm]K^{(I)}.[/mm]
>  Hallo zusammen,
>  
> den Beweis, dass es sich um einen UVR handelt habe ich
> denke ich hin bekommen, das schien mir nicht so
> kompliziert. Allerdings weiß ich nicht so recht, wie ich
> vorgehen soll, um eine Basis zu bestimmen.
>  
> Ich weiß, dass eine Familie s in V dann eine Basis ist,
> wenn die Abbildung [mm]f_s[/mm] : [mm]K^{(I)} \to[/mm] V, a [mm]\mapsto \summe_{i \in I} a_i s_i[/mm]
> bijektiv ist. Allerdings weiß ich nicht, wie ich das
> anwenden sollte.

Damit würde ich das nicht machen !

[mm] K^I [/mm] ist doch die Menge aller Abbildungen x:I [mm] \to [/mm] K mit der Eigenschaft

   [mm] x(i)=x_i \ne [/mm] 0 für höchstens endlich viele i [mm] \in [/mm] I.

Sei i [mm] \in [/mm] I und [mm] x^{(i)} \in K^I [/mm] definiert durch

    [mm] x^{(i)}(i)=1 [/mm]  und [mm] x^{(i)}(j)=0 [/mm]  für j [mm] \in [/mm] I mit i [mm] \ne [/mm] j.

Zeige:

1. die Menge $B:= [mm] \{x^{(i)}: i \in I\}$ [/mm] ist linear unabhängig in [mm] K^I [/mm]

und

2. jedes x [mm] \in K^I [/mm] lässt sich als Linearkombination aus Elementen von $B$ darstellen.

Wenn Du das hast, so kannst Du sicher sein, dass $B$ eine Basis von [mm] K^I [/mm] ist.

FRED

>  
> Kann mir jemand von euch einen Tipp für einen Ansatz
> geben?
>  
> Vielen Dank und schöne Grüße,
>  Avinu


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]