matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraBasis für Schnitt V,W
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Basis für Schnitt V,W
Basis für Schnitt V,W < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis für Schnitt V,W: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:54 So 24.02.2008
Autor: XPatrickX

Aufgabe
Es seien V und W Unterräume von [mm] \IR^5 [/mm]  mit den Basen [mm] {v_1,v_2,v_3}={(1,3,-2,2,3),(1,4,-3,4,2),(1,3,0,2,3)} [/mm] und [mm] {w_1,w_2,w_3}={(2,3,-1,-2,9),(1,5,-6,6,1),(2,4,4,2,8)}. [/mm] Finde Basen für V+W und V [mm] \cap [/mm] W.  

Hallo!

Also ich starte mit der Matrix [mm] Q=[v_1v_2v_3w_1w_2w_3]=\pmat{ 1 & 1 & 1 & 2 & 1 & 2 \\ 3 & 4 & 3 & 3 & 5 & 4 \\ -2 & -3 & 0 & -1 & -6 & 4 \\ 2 & 4 & 2 & -2 & 6 & 2 \\ 3 & 2 & 3 & 9 & 1 & 8}. [/mm]

Diese bringe ich mit Gauß in die Zeilenstufenform: [mm] \pmat{ 1 & 0 & 0 & 5 & 0 & 0 \\ 0 & 1 & 0 & -3 & 2 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0& 0 & 0 & 0 & 0 & 0} [/mm]

Dann weiß ich schonmal, dass dim(V+W) = 4. Ich wähle die 1,2,3 und 6 Spalte meiner Ausgangsmatrix Q als Basis für V+W, oder?

Wie genau bestimme ich jetzt eine Basis für V [mm] \cap [/mm] W ? Kann ich dazu einfach nur die 4,5 Spalte von Q als Basis wählen?

Ich habe eine Lösung dazu, in der ist eine Basis für N(Q) also den Kern ausgerechnet worden. Es ist [mm] y_1=(-5,3,0,1,0,0) [/mm] und [mm] y_2=(0,-2,1,0,1,0). [/mm] Dies liefert dann die Gleichungen: [mm] -5v_1+3v_2+w_1=0, -2v_2+v_3+w_2=0 [/mm] Daraus folgt: [mm] x_1=5v_1-3v_2 [/mm] = [mm] w_1 x_2 [/mm] = [mm] 2v_2-v_3=w_2. [/mm]
Dann sind ja [mm] w_1 [/mm] und [mm] w_2 [/mm] wieder die beiden Basisvektoren. Wozu muss ich diesen Umweg über den Kern machen?

Kann es sein, dass dies nur dazu da ist um die Dimensionsformel zu überprüfen? Denn hier steht, dass dimN(Q)=dim(V [mm] \cap [/mm] W) = 2. Warum ist dimN(Q)=dim(V [mm] \cap [/mm] W) das Gleiche?

Ich glaub ich kann mir irgendwie das mit dem Durchschnitt nicht so richtig vorstellen. Wäre nett, wenn mir da nochmal jemand helfen könnte.
Danke viele Grüße Patrick

        
Bezug
Basis für Schnitt V,W: Antwort
Status: (Antwort) fertig Status 
Datum: 03:16 Mo 25.02.2008
Autor: Pompeius

Hi !

Zur Bestimmung der Basis von V [mm] \cap [/mm] W :

sei v [mm] \in [/mm] V , w [mm] \in [/mm] W ,   a,b [mm] \in [/mm] K

Wenn jetzt w [mm] \in [/mm] (V [mm] \cap [/mm] W) gilt, dann ist ja auch w [mm] \in [/mm] V ..

also gilt: w = [mm] a_{1}*v_{1}+...+a_{3}*v_{3} [/mm]  
         [mm] \to [/mm] 0 = w- [mm] a_{1}*v_{1}+...+a_{3}*v_{3} [/mm]

              w:= [mm] b_{1}*w_{1}+...+b_{3}*w_{3} [/mm]

         [mm] \to [/mm] 0 = [mm] [b_{1}*w_{1}+...+b_{3}*w_{3}] [/mm] -    
                 [mm] (a_{1}*v_{1}+...+a_{3}*v_{3}) [/mm]

Dementsprechend wird dann die Matrix gebildet ..

Nach Umformung der Matrix, so wie du das oben auch schon gemacht hast, sollte man eigentlich die Basisvektoren vom Unterraum V [mm] \cap [/mm] W ablesen können .. wenn ich mich jetzt irgendwie nicht versehen hab ..

gruß PoMpEiUs


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]