matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenBasis eines Unterraums
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Matrizen" - Basis eines Unterraums
Basis eines Unterraums < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis eines Unterraums: Tipps
Status: (Frage) beantwortet Status 
Datum: 15:06 Di 20.03.2012
Autor: Mathegirl

Aufgabe
Folgende Vektoren des [mm] \IR^4 [/mm] sind gegeben:

[mm] v_1=\vektor{1 \\ 2 \\ -1 \\ 0}, v_2=\vektor{1 \\ 0 \\ -1 \\ 0}, v_3=\vektor{0 \\ -1 \\ 3 \\ 2}, v_4=\vektor{0 \\ 1 \\ 0 \\ 1}, v_5=\vektor{2 \\ 2 \\ -1 \\ 1} [/mm]

Bestimme die Basen von [mm] Lin(v_1,v_2,v_3)\cap Lin(v_4,v_5) [/mm] und [mm] Lin(v_1,v_2,v_3)+ Lin(v_4,v_5). [/mm]


Bei dieser Aufgabe habe ich ein Problem, wo ich bisher noch nicht durchgestiegen bin:

Um den Schnitt zu ermitteln gilt gilt ja:

[mm] \lambda_1*\vektor{1 \\ 2 \\ -1 \\ 0}+ \lambda_2* \vektor{1 \\ 0 \\ -1 \\ 0}+\lambda_3*\vektor{0 \\ -1 \\ 3 \\ 2}= \mu_1*\vektor{0 \\ 1 \\ 0 \\ 1}+\mu_2*\vektor{2 \\ 2 \\ -1 \\ 1} [/mm]

Daraus ergibt sich dann folgendes LGS:
[mm] \pmat{ 1 & 1 & 0 & 0 & -2 \\ 2 & 0 & -1 & -1 & -2 \\ -1 & -1 & 3 & 0 & 1 \\ 0 & 0 & 2 & -1 & -1} [/mm]

In Zeilenstufenform gebracht erhält man dann:

[mm] \pmat{ 1 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 3 & 0 & -1 \\ 0 & 0 & 0 & 3 & 1} [/mm]

ich erhalte den freien Parameter [mm] \mu_2=a [/mm] und [mm] \mu_1=-\bruch{a}{3} [/mm]

[mm] V=\{\mu_1*v_4+\mu_2*v_5/ \mu_2=a , \mu_1=-\bruch{a}{3}, a\in \IR\} [/mm] = [mm] \{a*\vektor{2 \\ \bruch{5}{3} \\ -1 \\ \bruch{2}{3}}\}= \{a*\vektor{6 \\ 5 \\ -3 \\2}\} [/mm]

also ist [mm] \vektor{6 \\ 5 \\ -3 \\2} [/mm] eine Basis von  [mm] Lin(v_1,v_2,v_3)\cap Lin(v_4,v_5). [/mm]

Könnt ihr mir erklären wie man darauf kommt? Das verstehe ich nicht. Wenn ich nach [mm] \lambda [/mm] und [mm] \mu [/mm] umstelle, dann müsste ich ja 5 Variablen in der Basis haben.


Weiter soll ich eine Basis bestimmen von [mm] Lin(v_1,v_2,v_3)+ Lin(v_4,v_5). [/mm] Aus der Dimensionsformel erhalte ich dim(U+V)=4

kann ich dann eine beliebige Basis des [mm] \IR^4 [/mm] wählen, zum Beispiel die Standardvektoren?

Oder kann ich eine Basis des [mm] \IR^4 [/mm] aus den gegebenen [mm] v_1-v_5 [/mm] wählen? Oder kann ich das LGS in Zeilenstudenform bringen und die nicht Null Zeilen als Basis verwenden?

Hier bin ich mir noch sehr unsicher.


MfG
Mathegirl



        
Bezug
Basis eines Unterraums: Antwort
Status: (Antwort) fertig Status 
Datum: 16:42 Di 20.03.2012
Autor: MathePower

Hallo Mathegirl,

> Folgende Vektoren des [mm]\IR^4[/mm] sind gegeben:
>  
> [mm]v_1=\vektor{1 \\ 2 \\ -1 \\ 0}, v_2=\vektor{1 \\ 0 \\ -1 \\ 0}, v_3=\vektor{0 \\ -1 \\ 3 \\ 2}, v_4=\vektor{0 \\ 1 \\ 0 \\ 1}, v_5=\vektor{2 \\ 2 \\ -1 \\ 1}[/mm]
>  
> Bestimme die Basen von [mm]Lin(v_1,v_2,v_3)\cap Lin(v_4,v_5)[/mm]
> und [mm]Lin(v_1,v_2,v_3)+ Lin(v_4,v_5).[/mm]
>  
> Bei dieser Aufgabe habe ich ein Problem, wo ich bisher noch
> nicht durchgestiegen bin:
>  
> Um den Schnitt zu ermitteln gilt gilt ja:
>  
> [mm]\lambda_1*\vektor{1 \\ 2 \\ -1 \\ 0}+ \lambda_2* \vektor{1 \\ 0 \\ -1 \\ 0}+\lambda_3*\vektor{0 \\ -1 \\ 3 \\ 2}= \mu_1*\vektor{0 \\ 1 \\ 0 \\ 1}+\mu_2*\vektor{2 \\ 2 \\ -1 \\ 1}[/mm]
>  
> Daraus ergibt sich dann folgendes LGS:
>  [mm]\pmat{ 1 & 1 & 0 & 0 & -2 \\ 2 & 0 & -1 & -1 & -2 \\ -1 & -1 & 3 & 0 & 1 \\ 0 & 0 & 2 & -1 & -1}[/mm]
>  
> In Zeilenstufenform gebracht erhält man dann:
>
> [mm]\pmat{ 1 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 3 & 0 & -1 \\ 0 & 0 & 0 & 3 & 1}[/mm]
>  
> ich erhalte den freien Parameter [mm]\mu_2=a[/mm] und
> [mm]\mu_1=-\bruch{a}{3}[/mm]
>  
> [mm]V=\{\mu_1*v_4+\mu_2*v_5/ \mu_2=a , \mu_1=-\bruch{a}{3}, a\in \IR\}[/mm]
> = [mm]\{a*\vektor{2 \\ \bruch{5}{3} \\ -1 \\ \bruch{2}{3}}\}= \{a*\vektor{6 \\ 5 \\ -3 \\2}\}[/mm]
>  
> also ist [mm]\vektor{6 \\ 5 \\ -3 \\2}[/mm] eine Basis von  
> [mm]Lin(v_1,v_2,v_3)\cap Lin(v_4,v_5).[/mm]
>  
> Könnt ihr mir erklären wie man darauf kommt? Das verstehe
> ich nicht. Wenn ich nach [mm]\lambda[/mm] und [mm]\mu[/mm] umstelle, dann
> müsste ich ja 5 Variablen in der Basis haben.
>  
>
> Weiter soll ich eine Basis bestimmen von [mm]Lin(v_1,v_2,v_3)+ Lin(v_4,v_5).[/mm]
> Aus der Dimensionsformel erhalte ich dim(U+V)=4
>  
> kann ich dann eine beliebige Basis des [mm]\IR^4[/mm] wählen, zum
> Beispiel die Standardvektoren?
>  
> Oder kann ich eine Basis des [mm]\IR^4[/mm] aus den gegebenen
> [mm]v_1-v_5[/mm] wählen? Oder kann ich das LGS in Zeilenstudenform
> bringen und die nicht Null Zeilen als Basis verwenden?
>  
> Hier bin ich mir noch sehr unsicher.
>  


Diese Frage hast Du hier schon eimal gestellt.


>
> MfG
>  Mathegirl
>  



Gruss
MathePower  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]