matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesBasis eines Spans
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra Sonstiges" - Basis eines Spans
Basis eines Spans < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis eines Spans: Korrektur, Tipp
Status: (Frage) beantwortet Status 
Datum: 13:09 Do 06.02.2014
Autor: Fixel

Aufgabe
Bestimmen Sie eine Basis von [mm] <v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{1} [/mm] + [mm] 4v_{3}, v_{5} [/mm] + [mm] \pi v_{2},\wurzel{5}v_{4}>! [/mm]
[mm] v_{1}=\vektor{7\wurzel{5}\\5\\3\\2\\5} v_{2}=\vektor{-3\wurzel{5} \\ -5\\-2\\-7\\-2} v_{3}=\vektor{3\wurzel{5} \\ 3\\7\\3\\3} v_{4}=\vektor{2\wurzel{5} \\ 4\\3\\3\\7} v_{5}=17^{9999}\vektor{3\wurzel{5} \\ 2\\2\\5\\5} [/mm]

Um eine Basis dieses Spans zu finden habe ich die Vektoren, außer die Kombinationen wie z.B. [mm] v_{1}+4v_{3}, [/mm] in ein Homogenes Gleichungssystem eingesetzt um ihre Lineare Unabhängigkeit zu prüfen. Bei [mm] v_{5} [/mm] habe ich die [mm] 17^{9999} [/mm] weggelassen, da es irrelevant ist, oder?
Wenn ich nun das Homogene Gleichungssystem mit dem GJA löse und ich 5 Auszeichnungen erhalte (keine 0-Zeile) ist doch eine Basis z.B.: [mm] (v_{1},v_{2},v_{3},v_{4},v_{5}) [/mm]

Habe ich etwas übersehen oder ist das Korrekt?
Danke schonmal im Vorhinein :)
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Basis eines Spans: Antwort
Status: (Antwort) fertig Status 
Datum: 13:49 Do 06.02.2014
Autor: angela.h.b.


> Bestimmen Sie eine Basis von [mm]<v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{1}[/mm]
> + [mm]4v_{3}, v_{5}[/mm] + [mm]\pi v_{2},\wurzel{5}v_{4}>![/mm]
>  
> [mm]v_{1}=\vektor{7\wurzel{5}\\5\\3\\2\\5} v_{2}=\vektor{-3\wurzel{5} \\ -5\\-2\\-7\\-2} v_{3}=\vektor{3\wurzel{5} \\ 3\\7\\3\\3} v_{4}=\vektor{2\wurzel{5} \\ 4\\3\\3\\7} v_{5}=17^{9999}\vektor{3\wurzel{5} \\ 2\\2\\5\\5}[/mm]
>  
> Um eine Basis dieses Spans zu finden habe ich die Vektoren,
> außer die Kombinationen wie z.B. [mm]v_{1}+4v_{3},[/mm] in ein
> Homogenes Gleichungssystem eingesetzt um ihre Lineare
> Unabhängigkeit zu prüfen. Bei [mm]v_{5}[/mm] habe ich die
> [mm]17^{9999}[/mm] weggelassen, da es irrelevant ist, oder?

Hallo,

[willkommenmr].

Ja,
"offensichtlich" ist
[mm] =[/mm] [mm][mm] <v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{1}+[/mm]  [mm]4v_{3}, v_{5}[/mm] + [mm]\pi v_{2},\wurzel{5}v_{4}>[/mm] .

In  einer HÜ würde ich das Offensichtliche knapp erläutern. (Linearkombination)

>
>  Wenn ich nun das Homogene Gleichungssystem mit dem GJA
> löse und ich 5 Auszeichnungen erhalte (keine 0-Zeile)

dann sind alle Faktoren vor den [mm] v_i [/mm] gleich 0,

> ist
> doch eine Basis z.B.: [mm](v_{1},v_{2},v_{3},v_{4},v_{5})[/mm]

Ja.

Ob dies aber wirklich der Fall ist, habe ich nicht nachgerechnet.

LG Angela

>  
> Habe ich etwas übersehen oder ist das Korrekt?
>  Danke schonmal im Vorhinein :)
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]