matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeBasis eines Polynoms
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Moduln und Vektorräume" - Basis eines Polynoms
Basis eines Polynoms < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis eines Polynoms: Idee
Status: (Frage) beantwortet Status 
Datum: 15:33 Mi 11.02.2015
Autor: Molo_Hamburg

Aufgabe
Wir betrachten den folgenden Unterraum des [mm] P_{2} [/mm]

U := [mm] \left\{ p= a_0 + a_1 x + a_2 x^2 \in P_2: a_0 = a_1 + a_2 \right\} [/mm]

und folgende Familie von Vektoren

B := [mm] \left(1 + x, 2 + x + x^2\right) [/mm]

Ist B eine Basis?

Hallo liebe Leute,

ich habe noch ein wenig Probleme Basen von Funktionen bzw. Poynomen zubestimmten.
Mein erstes Problem besteht darin wie ich das LGS aufstelle.

Ich würde die Vektoren
P1: [mm] \vektor{1 \\ 1 \\ 0}, \vektor{2 \\ 1 \\ 1} [/mm] aufstellen. Demnach wären sie aber linear abhängig.

Ich hoffe ihr könnt mir ein wenig weiterhelfen! :)

        
Bezug
Basis eines Polynoms: Antwort
Status: (Antwort) fertig Status 
Datum: 15:48 Mi 11.02.2015
Autor: fred97


> Wir betrachten den folgenden Unterraum des [mm]P_{2}[/mm]
>  
> U := [mm]\left\{ p= a_0 + a_1 x + a_2 x^2 \in P_2: a_0 = a_1 + a_2 \right\}[/mm]
>  
> und folgende Familie von Vektoren
>
> B := [mm]\left(1 + x, 2 + x + x^2\right)[/mm]
>  
> Ist B eine Basis?

Von was ????  

Ich nehme an, die Frage lautet so: ist B eine Basis von U ?





>  Hallo liebe Leute,
>  
> ich habe noch ein wenig Probleme Basen von Funktionen bzw.
> Poynomen zubestimmten.
>  Mein erstes Problem besteht darin wie ich das LGS
> aufstelle.
>  
> Ich würde die Vektoren
>  P1: [mm]\vektor{1 \\ 1 \\ 0}, \vektor{2 \\ 1 \\ 1}[/mm] aufstellen.
> Demnach wären sie aber linear abhängig.

Hä ?? Diese Vektoren sind linear unabhängig !





>  
> Ich hoffe ihr könnt mir ein wenig weiterhelfen! :)





Setzen wir [mm] p_1(x):=1 [/mm] + x und [mm] p_2(x):= [/mm] 2 + x + [mm] x^2. [/mm]

Frage 1: gilt [mm] p_1,p_2 \in [/mm] U ?

Frage 2: sind [mm] p_1 [/mm] und [mm] p_2 [/mm] linear unabhängig ?

Frage 3: lässt sich jedes p [mm] \in [/mm] U als Linearkombination von [mm] p_1 [/mm] und [mm] p_2 [/mm] darstellen ?

Bei dreimal "ja" ist B eine Basis von U, anderenfalls nicht.

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]