matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraBasis des Spaltenraums
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Basis des Spaltenraums
Basis des Spaltenraums < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis des Spaltenraums: Korrektur
Status: (Frage) beantwortet Status 
Datum: 16:10 Mo 04.12.2006
Autor: celeste16

Aufgabe
Finden Sie eine Basis des Spaltenraums der reellen Matrix [mm] \pmat{ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 2 & 0 & 1 & 1 } [/mm]

so, weils so schön war gleich nochmal ich: wie immer ist die Übung weiter als die Vorlesung, deswegen hab ich keine Ahnung was ein Spaltenraum ist. Vor der Aufgabenstellung steht aber ein kleiner Text aus dem ich mir einfach mal was zusammengebastelt habe. kann also sein, dass ihr gleich seeehr amüsiert seid wenn ihr das hier lest:

wenn die Spalten als Vektoren angesehen werden und diese das System des Spaltenraums aufstellen habe ich:
[mm] a\vektor{1 \\ 1 \\ 2} [/mm] + [mm] b\vektor{0 \\ 0 \\ 0} [/mm] + [mm] c\vektor{1 \\ 0 \\ 1} [/mm] + [mm] d\vektor{0 \\ 1 \\ 1} [/mm]

Die Basis davon ist [mm] (\vektor{1 \\ 0 \\ 1},\vektor{0 \\ 1 \\ 1}) [/mm] (da die anderen Vektoren als Linearkombination der beiden geschrieben werden können und sie linear unabhängig sind)

so hätte ich das jetzt gesehen, aber wie gesagt wir hatten das Thema noch nicht

        
Bezug
Basis des Spaltenraums: Antwort
Status: (Antwort) fertig Status 
Datum: 22:19 Mo 04.12.2006
Autor: DaMenge

Hi,

> Die Basis davon ist [mm](\vektor{1 \\ 0 \\ 1},\vektor{0 \\ 1 \\ 1})[/mm]
> (da die anderen Vektoren als Linearkombination der beiden
> geschrieben werden können und sie linear unabhängig sind)

das ist richtig, aber muss natürlich noch gezeigt werden !
(also sowohl die linearkombination der anderen vektoren als auch die lineare unabhängigkeit dieser beiden...)

kleine Hinweis noch: ein Spaltenraum ist der Raum, der durch die Spalten (gesehen als vektoren) aufgespannt wird...

viele Grüße
DaMenge

Bezug
                
Bezug
Basis des Spaltenraums: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:38 Di 05.12.2006
Autor: celeste16

  
> das ist richtig, aber muss natürlich noch gezeigt werden !
>  (also sowohl die linearkombination der anderen vektoren
> als auch die lineare unabhängigkeit dieser beiden...)

klar, war nur zu faul es zu posten,
danke für deine Hilfe

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]