matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraBasis der Ebene
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Basis der Ebene
Basis der Ebene < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis der Ebene: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 23:14 So 13.01.2008
Autor: chipbit

Aufgabe
Finden Sie bzgl. des Standard-Skalarproduktes im [mm] \IR^3 [/mm] eine orthonormale Basis für die Ebene [mm] E=\{ (x,y,z) \in \IR^3|x-2y+5z=0\} [/mm]

Hallo,
also, ich weiß ja was eine orthonormale Basis ist, von daher hab ich da ja eher kein Problem damit. Gibt es jedoch irgendwie einen Trick oder ein Verfahren wie man diese Basis der Ebene finden kann?

        
Bezug
Basis der Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 01:23 Mo 14.01.2008
Autor: Zneques

Hallo,

Im Allgemeinen müsstest du erstmal eine Basis der Ebene finden.
Dann muss der zweite durch Linearkombination der beiden Basisvektoren senkrecht zu ersten gerechnet werden. Danach folgt dann noch das Normieren.

Hier kannst du jedoch [mm] \vec{n}=\vektor{1\\-2\\5} [/mm] die Senkrechte zur Ebene ablesen.
Nun einen dazu Senkrechten (eine Koord.=0 die anderen beiden vertauschen und eines der Vorzeichen wechseln) [mm] \vec{v_1}=\vektor{ 2 \\ 1 \\ 0} [/mm]
[mm] \vec{v_2} [/mm] muss jetzt zu [mm] \vec{n} [/mm] und [mm] \vec{v_1} [/mm] orthogonal sein. Das bringt uns z.B. das Kreuzprodukt.
[mm] \vec{v_2}=\vec{n}\times\vec{v_1} [/mm]
Dann sind die Normierten von [mm] \vec{v_1} [/mm] und [mm] \vec{v_2} [/mm] deine Lösung.

Ciao.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]