matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeBasis bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Moduln und Vektorräume" - Basis bestimmen
Basis bestimmen < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis bestimmen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 13:03 Di 29.03.2011
Autor: chesn

Aufgabe
Habe die genaue Aufgabenstellung leider nicht mehr... versuchs mal so:

$ [mm] U:=<1+x+x^2, [/mm] 1+x, [mm] x^2> [/mm] $ und $ [mm] W:=
Bestimme eine Basis von $ U [mm] \cap [/mm] W $.

Hoffe man erkennt was gemeint ist, sollte ich was vergessen haben, einfach drauf hinweisen. :) Bitte um Korrektur.. bin mir noch etwas unsicher hierbei.
Vielen Dank schonmal!

Meine Lösung:

Erstmal die Polynome als Vektoren schreiben, also
[mm] $1+x+x^2$ [/mm] als [mm] \pmat{ 1 \\ 1 \\ 1 } [/mm]
$1+x$ als [mm] \pmat{ 1 \\ 1 \\ 0 } [/mm]
[mm] $x^2$ [/mm] als [mm] \pmat{ 0 \\ 0 \\ 1 } [/mm] usw.

Dann setze ich U und W gleich: $ [mm] \lambda_{1}*\pmat{ 1 \\ 1 \\ 1 } [/mm] + [mm] \lambda_{2}*\pmat{ 1 \\ 1 \\ 0 } [/mm] + [mm] \lambda_{3}*\pmat{ 0 \\ 0 \\ 1 } [/mm] = [mm] \mu_{1}*\pmat{ 0 \\ 1 \\ 1 } [/mm] + [mm] \mu_{2}*\pmat{ 1 \\ 0 \\ 1 } [/mm] + [mm] \mu_{3}*\pmat{ 1 \\ -1 \\ 0 }. [/mm] $

Damit folgt das Lineare Gleichungssystem:

[mm] \pmat{1&1&0&0&-1&-1 \\ 1&1&0&-1&0&1 \\ 1&0&1&-1&-1&0} \to \pmat{0&0&0&1&-1&-2 \\ 0&1&-1&0&1&1 \\ 1&0&1&-1&-1&0} [/mm]

Da ich 6 Variablen habe und nur 3 Gleichungen, kann ich mir 3 Variablen frei wählen. Sei also [mm] \mu_{1}=r [/mm] und [mm] \mu_{2}=s. [/mm] Damit folgt aus der ersten Zeile des LGS: [mm] r-s-2\mu_{3}=0 \gdw \mu_{3}=\bruch{r-s}{2}. [/mm] Dann wähle ich noch [mm] \lambda_{3} [/mm] = t und verfahre so weiter...

[mm] \Rightarrow [/mm]
[mm] \lambda_{1} [/mm] = r+s+t
[mm] \lambda_{2} [/mm] = [mm] t-s-\bruch{r-s}{2} [/mm]
[mm] \lambda_{3} [/mm] = t
[mm] \mu_{1} [/mm] = r
[mm] \mu_{2} [/mm] = s
[mm] \mu_{3} [/mm] = [mm] \bruch{r-s}{2} [/mm]

Jetzt setze z.B. r=1, s=0, t=0 und erhalte [mm] \bruch{1}{2}+\bruch{1}{2}x+x^2 [/mm] . Mache ich dasselbe mit s, erhalte ich das gleiche ergebnis, bei t kommt 0 raus. Heisst das die Basis meines Schnittes ist [mm] \bruch{1}{2}+\bruch{1}{2}x+x^2 [/mm] ? Ist das ganze soweit richtig??

Vielen Dank!


        
Bezug
Basis bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:23 Di 29.03.2011
Autor: leduart

Hallo
ich hab nicht alles gelesen, weil es mir zu umständlich scheint.
aber bestimm doch erstmal die Dimension von U und W, dann wirds schon viel einfacher. es sind Unterräume eines 3d VR wenn du ihre dim kennst weisst du welche dim der schnitt höchstens oder mindestens hat.
dann bist du schon fast fertig.
aber dein Ergebnis ist richtig, wenn auch umständlich gefunden.
Gruss leduart




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]