matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraBasis angeben
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Basis angeben
Basis angeben < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis angeben: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:19 Sa 05.01.2008
Autor: Stefan235

Aufgabe
Wir betrachten im Vektorraum [mm] \IR^2 [/mm] den Unterraum G = [mm] \{(x_{1},x_{2} \in \IR^2 | x_{1}+x_{2} = 0 \} [/mm]
a) Geben Sie eine Basis von G an.

Hallo,
irgendwie war wohl Weihnachten und Silvester etwas zu viel für mich.

Eine Basis in o.g. Aufgabe müsste (1,-1) sein. Aber wie kommt man den da drauf. Ich kann das ja nicht einfach hinschreiben oder?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Basis angeben: Antwort
Status: (Antwort) fertig Status 
Datum: 17:00 Sa 05.01.2008
Autor: steppenhahn

Die Menge verdeutlicht ja nichts anderes als ein x aus R und dazu sein additiv inverses.

Man kann ja x1 + x2 = 0 umformen in
x1 = -x2 und erhält somit eine lineare Funktion.
Im Graphen sieht das so aus:

o       |
  o     |
    o   |
      o |
-----------------
        | o
        |   o
        |     o
        |       o

Eine Basis ist ein Erzeugendensystem (und linear unahängig). Was ist das Erzeugendensystem einer Gerade? Natürlich ein Vektor, der genau ihre Richtung "anzeigt". Das kann zum Beispiel der Vektor (1,-1), aber auch (2,-2), ... sein.

Du musst dann aber noch zeigen, dass die gefundene Basis linear unabhängig ist, also dass für

0 = [mm] \lambda_{1}*v_{1} [/mm] + [mm] \lambda_{2}*v_{2} [/mm]

mit v = [mm] \vektor{v_{1} \\ v_{2}} [/mm] = [mm] \vektor{1 \\ -1} [/mm] folgt, dass [mm] \lambda_{1} [/mm] = [mm] \lambda_{2} [/mm] = 0 ist.

Bezug
                
Bezug
Basis angeben: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:31 Sa 05.01.2008
Autor: Stefan235

Aufgabe
Es sei f: [mm] \IR^2 \to \IR^2 [/mm] die lienare Abbildung, die einen Punkt zuerst an G und dann an der [mm] x_{1}-Achse [/mm] spiegelt. Bestimmen Sie bezüglich der kanonischen Basis des [mm] \IR^2 [/mm] die Matrix S, die f beschreibt.

Hallo,
danke für die schnelle Antwort. Deine Erklärung hat mir meinen Verdacht anschaulich bestätigt.
Zu der Aufgabe gibt es aber noch eine zweite Teilaufgabe. Hierbei muss ich ja wohl den Einheitsvektor (1,0) verwenden, der ja die [mm] x_{1}-Achse [/mm] beschreibt. Aber wie soll ich daraus eine Matrix bilden. Oder genügt es, das einfach nur untereinander zu schreiben?

Bezug
                        
Bezug
Basis angeben: Antwort
Status: (Antwort) fertig Status 
Datum: 22:31 Sa 05.01.2008
Autor: steppenhahn

Zunächst bestimmt man die beiden Abbildungen, die eigentlich gefordert sind.

Die erste Abbildung (wir nennen sie g(x)) spiegelt einen Punkt P(x,y) an der Geraden -x, die wir oben bestimmt haben. Sieht man sich das im Graphen an, kann man schnell herausfinden, was dann mit den Koordinaten des Punkts P passiert:

-die beiden Koordinaten x und y werden vertauscht und "negativiert", also:
[mm] \vektor{x \\ y} \overbrace{\mapsto}^{g} \vektor{-y \\ -x}. [/mm]

Nun müssen wir diese Abbildung in eine Matrix A überführen, die bei Multiplikation mit P genau dasselbe erledigt, d.h. sie muss folgendes erledigen:

AP = [mm] A\vektor{x \\ y} [/mm] = [mm] \vektor{-y \\ -x} [/mm]

Dazu führt man die lineare Abbildung mit den Koordinaten-Einheitsvektoren von [mm] R^{2} [/mm] aus [mm] (\vektor{1 \\ 0} [/mm] und [mm] \vektor{0 \\ 1}): [/mm]

[mm] \vektor{1 \\ 0} \overbrace{\mapsto}^{g} \vektor{0 \\ -1}. [/mm]
[mm] \vektor{0 \\ 1} \overbrace{\mapsto}^{g} \vektor{-1 \\ 0}. [/mm]

Nun kann man A einfach durch zusammenfassen der erhaltenen Vektoren bilden:

A = [mm] \pmat{g(\vektor{1 \\ 0}) & g(\vektor{0 \\ 1})} [/mm]
= [mm] \pmat{0 & -1 \\ -1 & 0} [/mm]

Die gefundene Matrix A erledigt nun bei Multiplikation mit einem beliebigem Punkt P dasselbe wie wenn man P in die lineare Abbildung g einsetzen würde.

Nun müssen wir die zweite Matrix B bestimmen. Zuvor jedoch die dazugehörige lineare Abbildung h(x).
Was passiert, wenn man einen Punkt P an der x-Achse spiegelt? Das Vorzeichen der y-Koordinate wird umgedreht, also "negativiert", d.h.

[mm] \vektor{x \\ y} \overbrace{\mapsto}^{h} \vektor{x \\ -y}. [/mm]

Die dazugehörige Matrix B bestimmen wir mit einsetzen der Einheitsvektoren:

[mm] \vektor{1 \\ 0} \overbrace{\mapsto}^{h} \vektor{1 \\ 0}. [/mm]
[mm] \vektor{0 \\ 1} \overbrace{\mapsto}^{h} \vektor{0 \\ -1}. [/mm]

--> B = [mm] \pmat{1 & 0 \\ 0 & -1} [/mm]

Auch B erfüllt nun dieselbe Funktion wie die lineare Abbildung h.

Im grunde wird f in der Aufgabenstellung ja als Hintereinanderausführung von g und h beschrieben. Der Punkt wird erst gespiegelt an der Geraden (also g(P)) und dann gespiegelt an der x-Achse (also h(g(P))).

Bei Matrizen ist diese Hintereinanderausführung die Multiplikation, unsere gesuchte Matrix ist also BA, also
BA = [mm] \pmat{ 1 & 0 \\ 0 & -1 }\pmat{ 0 & -1 \\ -1 & 0 } [/mm]
= [mm] \pmat{ 0 & -1 \\ 1 & 0 } [/mm] = C.

Diese Matrix C ist bei der Aufgabenstellung gesucht.
(Man hätte übrigens gleich die lineare Abbildung für beide Operation g und h bestimmen können und erst dann die Matrix bilden, dann wäre es schneller gegangen)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]