matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenHochschulPhysikBasis Kristall erkennen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "HochschulPhysik" - Basis Kristall erkennen
Basis Kristall erkennen < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis Kristall erkennen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:48 Mo 16.02.2015
Autor: Paivren

Hallo Leute,

ich habe schwierigkeiten, die Basis in der Kristallzelle zu erkennen (Bild angehängt).
Es schaut nach einem tetragonal raumzentrierten Kristall aus, würde ich sagen, die A-Atome bilden die Gitterpunkte.

Ich kann beim besten Willen nicht erkennen, welche Atome man zu einer Basis zusammenfassen kann, sodass man das Konstrukt an jedem Gitterpunkt anbringen kann, sodass der Kristall von jedem Gitterpunkt absolut identisch aussieht.

Kann mir da jemand helfen?

[Dateianhang nicht öffentlich]

Gruß

Paivren

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
        
Bezug
Basis Kristall erkennen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:50 Mo 16.02.2015
Autor: chrisno

Du erhältst die Basis, indem Du die eingezeichneten Kanten des Quaders ein wenig verschiebst. Alle Mittelpunkte von Atomen, die dann noch in dem QUader bleiben, gehören zur Basis.
Ich verschiebe den Quader auf uns zu, nach links und nach unten. Von den Atomen der Sorte a bleiben nur das bei dem n von nm und das zentriert sitzende übrig. Von den Atomen der Sorte O bleiben die beiden unteren und die beiden mittleren übrig. Es sind also doppelt so viele O wie a in der Basis. Das passt auch, denn von den Bindungen her hängen an jedem A sechs O, aber an jedem O nur drei A.

Bezug
                
Bezug
Basis Kristall erkennen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:41 Mi 18.02.2015
Autor: Paivren

Hallo Chrisno,

bedeutet das, ich habe gar keinen fcc-Kristall, sondern ein SC-Gitter?
Nach Deiner Schilderung gehört der Punkt in der Mitte dann ja zu dem Eckpunkt links vorne.

Gruß



Bezug
                        
Bezug
Basis Kristall erkennen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:30 Mi 18.02.2015
Autor: chrisno


> Hallo Chrisno,
>  
> bedeutet das, ich habe gar keinen fcc-Kristall,

Wie nkommst Du auf fcc?

> sondern ein
> SC-Gitter?

ja

>  Nach Deiner Schilderung gehört der Punkt in der Mitte
> dann ja zu dem Eckpunkt links vorne.

Das ist aber nicht das Argument. Diesen Zusammenhang hast Du auch in bcc.
Ohne die O wäre es bcc. Also macht die Anordung der O den Unterschied.


Bezug
                                
Bezug
Basis Kristall erkennen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:10 So 22.02.2015
Autor: Paivren

Hey,

ich meinte bcc, wegen des Atoms in der Mitte, pardon!
Es leuchtet dann aber ein, dass es keines ist, da die Umgebung von keinem der Eckpunkte genauso "aussieht", wie die Umgebung des Mittelatoms.
Eine Kommilitonin hatte mich gefragt, "was die Basis von diesem bcc-Kristall ist", und dann hab ich das bcc nicht mehr hinterfragt.

Trotzdem frage ich mich, woher Du so einfach gewusst hast, wie du das Konstrukt "verschieben" musst, um die Basis zu erkennen? Einfach ein geübter Blick?


Gruß

Paivren

Bezug
                                        
Bezug
Basis Kristall erkennen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:05 Mo 23.02.2015
Autor: chrisno

Das ist das Standard-Vorgehen. Das macht man, damit manb sich nicht mit lauter Achtel-Atomen herumschlagen muss.

Bezug
                                                
Bezug
Basis Kristall erkennen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:23 Fr 06.03.2015
Autor: Paivren

Alles klar,

ich danke Dir :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]