matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisBanachscher Fixpunktsatz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - Banachscher Fixpunktsatz
Banachscher Fixpunktsatz < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Banachscher Fixpunktsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:47 So 02.07.2006
Autor: Sandy857

Aufgabe:
Die Folge [mm] (x_{n})\subset\IR [/mm] sei zu gegebenem [mm] x_{0}\in \IR [/mm] definiert über [mm] x_{n+1}:=cos(x_{n}).Zeigen [/mm] Sie, dass diese Folge für jedes beliebige [mm] x_{0} [/mm] konvergiert.


Ich habe diese Frage in keinem anderen Forum gestellt. Ich habe mir also eine Abbildung definiert [mm] f:[-1,1]\to \IR [/mm] mit f(x)=0,5*cos(x). Diese Abbildung ist stark kontrahieren,da gilt: [mm] \parallel [/mm] f(x)-f(y) [mm] \parallel=\parallel 0,5*cos(x)-0,5*cos(y)\parallel\le [/mm] 0,5* [mm] \parallel [/mm] x-y [mm] \parallel [/mm] Daraus folgt nach Banachschen Fixpunktsatz:Für jeden Startwert [mm] x_{0}\in [/mm] [-1,1] konvergiert die Folge [mm] (x_{n}) [/mm] mit [mm] x_{n+1}:=f({x_n}) [/mm] gegen den Fixpunkt. Kann man nun daraus folgern,dass auch [mm] x_{n+1}:=cos(x_{n}) [/mm] konvergiert?

        
Bezug
Banachscher Fixpunktsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 13:20 So 02.07.2006
Autor: Hanno

Hallo.

>Ich habe diese Frage in keinem anderen Forum gestellt. Ich habe mir also eine Abbildung definiert $ [mm] f:[-1,1]\to \IR [/mm] $ mit f(x)=0,5*cos(x). Diese Abbildung ist stark kontrahieren,da gilt: $ [mm] \parallel [/mm] $ f(x)-f(y) $ [mm] \parallel=\parallel 0,5\cdot{}cos(x)-0,5\cdot{}cos(y)\parallel\le [/mm] $ 0,5* $ [mm] \parallel [/mm] $ x-y $ [mm] \parallel [/mm] $ Daraus folgt nach Banachschen Fixpunktsatz:Für jeden Startwert $ [mm] x_{0}\in [/mm] $ [-1,1] konvergiert die Folge $ [mm] (x_{n}) [/mm] $ mit $ [mm] x_{n+1}:=f({x_n}) [/mm] $ gegen den Fixpunkt.

Es ist alles okay, was du hier machst, aber leider hilft es bei der Lösung der Aufgabe nicht weiter. Durch deine Überlegungen beweist du die Existenz eines Fixpunktes der Abbildung $f$ mit [mm] $f(x)=\frac{1}{2}\cos(x)$, [/mm] d.h. ein [mm] $x\in \IR$ [/mm] mit [mm] $2x=\cos(x)$. [/mm] Wir benötigen genau dies für die Abbildung $f$ mit [mm] $f(x)=\cos(x)$. [/mm]

Verwenden wir diese, so sehen wir, dass ohne Einschränkung des Definitionsbereiches eine Abschätzung wie oben nicht möglich ist. Allerdings wissen wir, dass alle Folgenglieder [mm] $x_i, i\geq [/mm] 1$ in $[-1,1]$ liegen, es reicht also, die Kosinusfunktion aus diesem Intervall zu untersuchen. Dort ist die Ableitung durch eine Konstante $c<1$ betraglich nach oben beschränkt. Mit Hilfe des Mittelwertsatzes gelangen wir dadurch zur Abschätzung $|f(x)-f(y)|<c|x-y|$ (warum genau?).

Den Rest solltest du nun alleine packen, denn er unterscheidet sich nicht wesentlich von dem, was du bereits mit der Funktion [mm] $x\mapsto \frac{1}{2}\cos(x)$ [/mm] gemacht hast.


Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]