matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenNichtlineare GleichungenBanachscher Fixpunktsatz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Nichtlineare Gleichungen" - Banachscher Fixpunktsatz
Banachscher Fixpunktsatz < Nichtlineare Gleich. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Banachscher Fixpunktsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:54 Sa 18.02.2006
Autor: squeezer

Aufgabe
a) Berechnen Sie eine Näherung an die positive Nullstelle der Funktion $ f(x) = [mm] x^4-5 [/mm] $ mit dem Newton Verfahren mit Startwert x = 2 indem Sie einen Iterationsschritt durchführen.

b) Zeigen Sie, dass das Newton Verfahren aus a) für jeden Startwert x > 0 konvergiert.

Hallo

also den Teil a der Aufgabe damit habe ich kein Problem ich weiss nur nicht beim Teil b was bzw wie ich das genau beweisen soll.
Ich denke mir dass ich dazu den Banachschen Fixpunktsatz verwenden muss, also weigen dass
* Die Funktion $x- [mm] \bruch{x^4-5}{4x^3}$ [/mm] eine Lipschitzkonstante 0<L<1 hat <-- Mein Erstes Problem - Also die Funktion kontrahierend ist
* Die Funktion eine Selbstabbildung ist.

->Soweit ich weiss gilt der Banachsche Fixpunktsatz ja nur für ein abgeschlossenes Intervall, aber ist x>0 abgeschlossen?


Vielen Dank für Deine/Eure Auskunft

Marc

        
Bezug
Banachscher Fixpunktsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 16:14 Sa 18.02.2006
Autor: Christian

Hallo.

Der Banachsche Fixpunktsatz gilt allgemein in vollständigen metrischen Räumen. Dies ist insbesondere der Fall, wenn Du ein abgeschlossenes reelles Intervall hast.
Du solltest hier untersuchen, was mit Deinem Startwert passiert, wenn Du die Funktion einmal darauf anwendest... vielleicht kannst Du ja mit der Ableitung gewinnbringend abschätzen.
Dann bekommst Du heraus, daß Du auf jeden Fall ein abgeschlossenes Intervall findest, in dem für jedes [mm] $x_0$ [/mm] Dein [mm] $f(x_0)$ [/mm] anzutreffen ist.
Die Vollständigkeit Deines metrischen Raumes ist also hier kein Problem.
Dann solltest Du noch zeigen, daß dort $f_$ kontrahierend ist (auch hier kann die Ableitung helfen...).
Spiel einfach mal etwas mit den Termen herum, dann bekommt man die nötigen Eigenschaften fast geschenkt.

Gruß,
Christian

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Nichtlineare Gleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]