matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-NumerikBanachraum - Definition prüfen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Numerik" - Banachraum - Definition prüfen
Banachraum - Definition prüfen < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Banachraum - Definition prüfen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 11:54 Fr 29.05.2009
Autor: AriR

Aufgabe
Sei X ein Banachraum und $ [mm] T:X\to [/mm] $ X stetig und linear mit ||T|| < 1. Sei S definiert durch S:= $ [mm] \summe_{n=0}^\infty T^n [/mm] $

zeigen sie:
S(x) ist für alle [mm] x\in [/mm] X wohldefiniert

hallo,

ist meine lösung so richtig?

[mm] ||\bruch{T^{n+1}(x)}{T^n(x)}||=||\bruch{T(T^n(x))}{T^n(x)}||=sup_{x\in X}||\bruch{T(x)}{x}||=||T||<1 [/mm]

also folgt die behauptung nach der quotientenregel


gruß ;)

        
Bezug
Banachraum - Definition prüfen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:03 Fr 29.05.2009
Autor: moody

Hallo,

bitte nächstes Mal einen etwas konkreteren Frage - Titel.

"Ist das richtig?"
"Hilfe!!"
etc.

wird meistens weniger Beachtung geschenkt.

lg moody

Bezug
        
Bezug
Banachraum - Definition prüfen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:45 Fr 29.05.2009
Autor: fred97


> Sei X ein Banachraum und [mm]T:X\to[/mm] X stetig und linear mit
> ||T|| < 1. Sei S definiert durch S:= [mm]\summe_{n=0}^\infty T^n[/mm]
>  
> zeigen sie:
>  S(x) ist für alle [mm]x\in[/mm] X wohldefiniert
>  hallo,
>  
> ist meine lösung so richtig?
>  
> [mm]||\bruch{T^{n+1}(x)}{T^n(x)}||=||\bruch{T(T^n(x))}{T^n(x)}||=sup_{x\in X}||\bruch{T(x)}{x}||=||T||<1[/mm]


Mein Gott ! Entschuldige bitte, aber das ist völliger Unsinn. Du dividierst durch Elemente eines Bannachraumes !!!

1.Da X ein Bannachraum ist, ist auch L(X) = {A:X [mm] \to [/mm] X: A ist stetig und linear} ein Banachraum (ist Dir das klar ?)

2. Wegen ||T|| < 1 und  [mm] ||T^n|| \le ||T||^n [/mm] für jedes n, ist die Zahlenreihe

$ [mm] \summe_{n=0}^\infty ||T^n|| [/mm] $ konvergent (geometrische Reihe). Da L(X) ein Banachraum ist , ist somit

               $ [mm] \summe_{n=0}^\infty T^n [/mm] $

eine in L(X) konvergente Operatorenreihe , und somit ist S wohldefiniert.

FRED





>  
> also folgt die behauptung nach der quotientenregel
>  
>
> gruß ;)


Bezug
                
Bezug
Banachraum - Definition prüfen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:11 Fr 29.05.2009
Autor: AriR

was ist denn wenn man das so schreibt:

$ [mm] \bruch{||T^{n+1}(x)||}{||T^n(x)||}=\bruch{||T(T^n(x))||}{||T^n(x)||}=sup_{x\in X}\bruch{||T(x)||}{||x||}||=||T||<1 [/mm] $

könnte man die behauptung dann durch die quot.regel folgern?

Bezug
                        
Bezug
Banachraum - Definition prüfen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:18 Fr 29.05.2009
Autor: fred97


> was ist denn wenn man das so schreibt:
>  
> [mm]\bruch{||T^{n+1}(x)||}{||T^n(x)||}=\bruch{||T(T^n(x))||}{||T^n(x)||}=sup_{x\in X}\bruch{||T(x)||}{||x||}||=||T||<1[/mm]


Das ist schon besser, aber immer noch nicht ganz korrekt.

[mm] $\bruch{||T^{n+1}(x)||}{||T^n(x)||} \le \bruch{||T||*||T^{n}(x)||}{||T^n(x)||} [/mm] = ||T|| <1$

Mit dem Quotientenkriterium folgt:  

                [mm] \summe_{n=0}^{\infty}||T^nx|| [/mm]

konvergiert für jedes x in X. Da X ein Banachraum ist, konvergiert

            [mm] \summe_{n=0}^{\infty}T^nx [/mm] für jedes x in X

FRED



>  
> könnte man die behauptung dann durch die quot.regel
> folgern?


Bezug
                                
Bezug
Banachraum - Definition prüfen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:24 Fr 29.05.2009
Autor: AriR

besten dank :)

Da X ein Banachraum ist, konvergiert

            $ [mm] \summe_{n=0}^{\infty}T^nx [/mm] $ für jedes x in X

hier fließt auch die vollständigkeit mit ein oder?

Bezug
                                        
Bezug
Banachraum - Definition prüfen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:30 Fr 29.05.2009
Autor: fred97

Ja !

Ist [mm] (x_n) [/mm] eine Folge in einem Banachraum und [mm] \summe_{n=1}^{\infty}||x_n|| [/mm] konvergent, so kovergiert auch [mm] \summe_{n=1}^{\infty}x_n [/mm]


Kurz: in einem Banachraum gilt:

             $absolute ~Konvergenz~ einer~ Reihe  [mm] \Rightarrow [/mm]  Konvergenz~ der~ Reihe$


FRED

Bezug
                                                
Bezug
Banachraum - Definition prüfen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:27 Fr 29.05.2009
Autor: AriR

alles klar. besten dank für die hilfe ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]