matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Banachraum
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Analysis des R1" - Banachraum
Banachraum < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Banachraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:57 Mo 21.09.2009
Autor: Igor1

Aufgabe
C[a,b] wird durch [mm] \parallel [/mm] f [mm] \parallel [/mm] :=
[mm] (\integral_{a}^{b}{f^{2} dx})^{\bruch{1}{2}} [/mm] zu einem unvollständigen normierten Raum.

Hallo,

ich möchte zuerst die Lösung der Aufgabe , so wie es im Lehrbuch stand,posten:
Lösung: Sei a=b:=1, n>2 und [mm] f_{n}(x):=0 [/mm] für x [mm] \in [/mm] [0, [mm] \bruch{1}{2} -\bruch{1}{n}], [/mm] := [mm] nx+1-\bruch{n}{2} [/mm] für x [mm] (\bruch{1}{2}-\bruch{1}{n}, \bruch{1}{2}] [/mm] , :=1 für x [mm] \in (\bruch{1}{2}, [/mm] 1] (Zeichnung!). [mm] (f_{n}) [/mm] ist eine Cauchyfolge, besitzt aber keinen Grenzwert ( alles bezüglich der angegebenen Norm). Mit A 81.1  ( ich zittiere , was das bedeutet :
" Ist die Funktion stetig und nichtnegativ auf [a,b] und verschwindet  [mm] \integral_{a}^{b}{f dx}, [/mm] so muss f=0 sein.") sieht man nämlich, dass eine Grenzfunktion f auf [0, [mm] \bruch{1}{2}-\delta] [/mm] verschwinden und auf [mm] [\bruch{1}{2},1] [/mm] gleich 1 sein müßte, und dies  für jedes hinreichend kleine [mm] \delta>0. [/mm] Das ist eaber ein Widerspruch zur Stetigkeit von f.

Ich habe dazu eine Frage:

[mm] f_{n} [/mm] ist aus C [0,1] und nicht aus C[a,b] mit a=b=1 ?
Dadurch, dass diese Funktionenfolge aus einem anderen Raum ist als C[1,1], verstehe ich den Lösungsvorschlag nicht ganz:
warum besitzt die Folge [mm] f_{n}(1)=1 [/mm]  ( da [mm] f_{n}(1) [/mm] aus C[1,1]) keine Grenzfunktion?

Danke  und Gruss !

Igor

        
Bezug
Banachraum: Antwort
Status: (Antwort) fertig Status 
Datum: 11:09 Mo 21.09.2009
Autor: fred97


> C[a,b] wird durch [mm]\parallel[/mm] f [mm]\parallel[/mm] :=
> [mm](\integral_{a}^{b}{f^{2} dx})^{\bruch{1}{2}}[/mm] zu einem
> unvollständigen normierten Raum.
>  Hallo,
>  
> ich möchte zuerst die Lösung der Aufgabe , so wie es im
> Lehrbuch stand,posten:
>  Lösung: Sei a=b:=1,

Es muß wohl lauten: a = 0 , b=1



> n>2 und [mm]f_{n}(x):=0[/mm] für x [mm]\in[/mm] [0,
> [mm]\bruch{1}{2} -\bruch{1}{n}],[/mm] := [mm]nx+1-\bruch{n}{2}[/mm] für x
> [mm](\bruch{1}{2}-\bruch{1}{n}, \bruch{1}{2}][/mm] , :=1 für x [mm]\in (\bruch{1}{2},[/mm]
> 1] (Zeichnung!). [mm](f_{n})[/mm] ist eine Cauchyfolge, besitzt aber
> keinen Grenzwert ( alles bezüglich der angegebenen Norm).
> Mit A 81.1  ( ich zittiere , was das bedeutet :
>  " Ist die Funktion stetig und nichtnegativ auf [a,b] und
> verschwindet  [mm]\integral_{a}^{b}{f dx},[/mm] so muss f=0 sein.")
> sieht man nämlich, dass eine Grenzfunktion f auf [0,
> [mm]\bruch{1}{2}-\delta][/mm] verschwinden und auf [mm][\bruch{1}{2},1][/mm]
> gleich 1 sein müßte, und dies  für jedes hinreichend
> kleine [mm]\delta>0.[/mm] Das ist eaber ein Widerspruch zur
> Stetigkeit von f.
>  
> Ich habe dazu eine Frage:
>  
> [mm]f_{n}[/mm] ist aus C [0,1] und nicht aus C[a,b] mit a=b=1 ?
>  Dadurch, dass diese Funktionenfolge aus einem anderen Raum
> ist als C[1,1], verstehe ich den Lösungsvorschlag nicht

Nochmal: da hat sich jemand verschrieben:  a = 0, b= 1




> ganz:
>  warum besitzt die Folge [mm]f_{n}(1)=1[/mm]  ( da [mm]f_{n}(1)[/mm] aus
> C[1,1]) keine Grenzfunktion?



Das steht doch oben:


" ......dass eine Grenzfunktion f auf [0, [mm]\bruch{1}{2}-\delta][/mm] verschwinden und auf [mm][\bruch{1}{2},1][/mm]
gleich 1 sein müßte, und dies  für jedes hinreichend
kleine [mm]\delta>0.[/mm] Das ist eaber ein Widerspruch zur
Stetigkeit von f."



FRED

>  
> Danke  und Gruss !
>  
> Igor


Bezug
                
Bezug
Banachraum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:38 Mo 21.09.2009
Autor: Igor1

Hallo Fred97,

im Lehrbuch der Analysis Teil 2 von Harro Heuser ist wohl ein Schreibfehler.

Danke und Gruss !

Igor

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]