matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Banach'scher Fixpunktsatz
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Analysis des R1" - Banach'scher Fixpunktsatz
Banach'scher Fixpunktsatz < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Banach'scher Fixpunktsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:51 Mi 01.07.2015
Autor: zahlenfreund

Aufgabe
Geben Sie Beispiele zu folgenden Situationen(M,d) ist immer ein metrischer
Raum [mm] M\not=\emptyset [/mm]
(a) M ist vollständig, A ⊆ M ist eine Teilmenge, T: A → A ist eine Kontraktion,
aber T hat keinen Fixpunkt.
(b) M ist vollständig, A ⊆ M ist eine abgeschlossene Teilmenge, T: A → M ist eine Kontraktion, aber T hat keinen Fixpunkt.
(c)M ist vollständig, A ⊆ M ist eine abgeschlossene Teilmenge, T: A → A erfüllt d(T(x),T(y)) ≤ d(x,y) fur alle x,y ∈ M,
aber T hat keinen Fixpunkt


Hallo,

Die Begriffe vollständig, abgeschlossen sind mir klar, nur leider fällt mir überhaupt kein Beispiel ein. Für eine kleine Starthilfe würde ich mich freuen.

mfg zahlenfreund

        
Bezug
Banach'scher Fixpunktsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 09:03 Do 02.07.2015
Autor: fred97


> Geben Sie Beispiele zu folgenden Situationen(M,d) ist immer
> ein metrischer
>  Raum [mm]M\not=\emptyset[/mm]
>  (a) M ist vollständig, A ⊆ M ist eine Teilmenge, T: A
> → A ist eine Kontraktion,
>  aber T hat keinen Fixpunkt.
>  (b) M ist vollständig, A ⊆ M ist eine abgeschlossene
> Teilmenge, T: A → M ist eine Kontraktion, aber T hat
> keinen Fixpunkt.
>  (c)M ist vollständig, A ⊆ M ist eine abgeschlossene
> Teilmenge, T: A → A erfüllt d(T(x),T(y)) ≤ d(x,y) fur
> alle x,y ∈ M,
>  aber T hat keinen Fixpunkt
>  
> Hallo,
>  
> Die Begriffe vollständig, abgeschlossen sind mir klar, nur
> leider fällt mir überhaupt kein Beispiel ein. Für eine
> kleine Starthilfe würde ich mich freuen.
>  
> mfg zahlenfreund


Die Aufgabe soll zeigen, dass keine der Voraussetzungen im Banachschen Fixpunktsatz weggelassen werden darf.

Bei a) ist gesucht: M  vollständig, A [mm] \subseteq [/mm] M ist eine Teilmenge von M und T: A [mm] \to [/mm]  A  eine Kontraktion ohne Fixpunkt. A darf also nicht abgeschlossen sein !

Bei b) musst Du T so finden, dass T(A) [mm] \subseteq [/mm] A nicht erfüllt ist.

Welche Vor. bei c) nicht erfüllt ist, dürfte klar sein.



Also sind angesagt: Basteln, Probieren, auf die Schnauze fallen, weiter Basteln, ....


FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]