matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisBaire Kategorie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionalanalysis" - Baire Kategorie
Baire Kategorie < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Baire Kategorie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:46 Sa 02.10.2010
Autor: kalor

Aufgabe
Sei $\ [mm] \tau \in [/mm] C[0,1]$ und wir definieren eine Teilmenge:
[mm] X_\tau := \{g \tau | g \in C[0,1] \} \subset C[0,1][/mm]
Ich soll nun Bedinungen angeben (an $\ [mm] \tau$), [/mm] so dass $\ [mm] X_\tau$ [/mm] von der zweiten Kategorie ist.


Moin

Ich tue mich mit der Aufgabe ein wenig schwer. Wir haben dafür einen Tipp bekommen:
Annahme: $\ [mm] X_\tau$ [/mm] sie von der ersten Kategorie $\ [mm] \gdw$[/mm]  [mm] \tau{(a_0)} = 0 [/mm] für ein $\ [mm] a_0 \in [/mm] [0,1]$. Hier meine erste Frage: Ich sehe nicht, wieso diese Bedingungen äquivalent sind.
Des weiteren sollten wir eine Abbildung $\ [mm] F_\tau:C[0,1] \to [/mm] C[0,1], g [mm] \Rightarrow [/mm] g [mm] \tau$. [/mm] Daraus folgt ja:

[mm] X_\tau = F_\tau (C[0,1])[/mm]

Wir sollten des weiteren benützen: $\ X, Y$ Banachräume und $\ f$ eine stetige lineare Abbildung von $\ X [mm] \to [/mm] Y$ dann gilt eine der folgenden Aussage:

1. $\ f(X)$ ist von Kategorie 1
2. $\ f(X) = Y$ und $\ f$ ist offen.

Wenn ich zeigen könnte, dass $\ [mm] F_\tau$ [/mm] surjektiv und offen ist (Bedinungen an $\ [mm] \tau [/mm] $) dann muss ja $\ [mm] X_\tau [/mm] $ von Kategorie 2 sein. Aber wie mach ich das? Ich danke allen, die mir einen Tipp/Hilestellung geben können

        
Bezug
Baire Kategorie: Antwort
Status: (Antwort) fertig Status 
Datum: 09:26 Di 05.10.2010
Autor: fred97

Du sollst nun Bedinungen angeben (an $ \ [mm] \tau [/mm] $), so dass $ \ [mm] X_\tau [/mm] $ von  zweiter Kategorie ist.

Denk mal an ein nullstellenfreies [mm] \tau [/mm]

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]