matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikBahnkurve
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Physik" - Bahnkurve
Bahnkurve < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bahnkurve: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 14:08 Mi 01.11.2006
Autor: Mirja

Aufgabe
Die Position eines Punktteilchens sei gegeben durch den Positionsvektor [mm] \vec{a} [/mm] = [mm] \vektor{acos(wt) \\ bsin(wt)} [/mm] =>
mit a>b  und w = Winkelgeschindigkeit
1) Berechnen sie die Geschwindigkeit v(t) und die Beschleunigung a(t). Welchen Betrag haben die Geschwindigkeit und die Beschleunigung? Wie sehen die Einheitsvektoren in Richtung des Geschwindigkeits- und des Beschleunigungsvektors aus?
2) Bringen Sie die Bahnkurve auf die Form y(x), d.h. eliminieren sie den Parameter t. Um welche Kurve handelt es sich? (Hinweis: Für die Bahnkurve lässt sich eine Gleichung der Form Ax²+Bxy+Cy²=1 angeben, wie lauten A,B,C?)

Hallo,

wie lauten die Lösungswege und die Ergebnisse. Bei der 1ten Teilaufgabe muss ich wohl ableiten, aber wie?
Wäre euch sehr dankbar wenn Ihr zusätzlich zum Ergebnis und zum Lösungsweg möglichst noch anschauliche Erklärungen beifügen könntet, da ich die Aufgabe von Grund auf nicht verstehe (wenn nicht bin ich natürlich auch schon für ein Ergebnis sehr sehr dankbar).  

Vielen Dank!!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Bahnkurve: Antwort
Status: (Antwort) fertig Status 
Datum: 18:29 Mi 01.11.2006
Autor: nitro1185

Hallo!!Also ein bisschen Arbeit von dir oder ein paar gedanken wären schon gut. oder zumindest eine definition der winkelgeschwindigkeit.

einfach die lösung auf knopfdruck bestellen läuft nicht. wie ist die winkelgeschwindigkeit definiert??

mfg daniel

Bezug
                
Bezug
Bahnkurve: Idee
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:13 Mi 01.11.2006
Autor: Mirja

Hi,
1) Korrektur (nur zur "Verdeutlichung"): man nennt den Positionsvektor wohl besser r und nicht a , sonst könnte man denken das in der Aufgabe 2 mal ein gleiches a vorkommt
2)
Also das einzige was ich glaube zu wissen, ist, das ja die 1te Ableitung die Geschwindigkeit und die zweite die Beschleunigung sein muß:
somit wäre doch die 1. Ableitung von:
[mm] \vec{r} [/mm] (t) =   [mm] \vektor{acos(wt) \\ bsin(wt)} [/mm]   =>
[mm] \vec{v} [/mm] (t) =   [mm] \vektor{-awsin(wt) \\ bwcos(wt)} [/mm] = Geschwindigkeit, oder?

Wenn dann die 2.Ableitung die Beschleunigung ist, dann müßte das doch wie folgt lauten:

[mm] \vec{a} [/mm] (t) = [mm] \vektor{-awwcos(wt) \\ -bwwsin(wt)} [/mm]

Aber ehrlich gesagt finde ich, dass die 2. Ableitung doch  sehr falsch aussieht oder??
Das ist aber auch die einzige Idee auf die ich zu dieser Aufgabe nach ewigen überlegen gekommen bin

Bezug
        
Bezug
Bahnkurve: Antwort
Status: (Antwort) fertig Status 
Datum: 20:06 Mi 01.11.2006
Autor: Event_Horizon

Deine Idee mit den Ableitungen ist aber 100% korrekt!

Nun zu dem anderen: Wie man den Betrag eines Vektors ausrechnet, weißt du aber, oder?

Die Richtungsvektoren haben die Länge 1, also mußt du deine Vektoren noch duch den jeweils berechneten Betrag teilen.






Bezug
                
Bezug
Bahnkurve: Rückfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:46 Mi 01.11.2006
Autor: Mirja

Naja bin Erstsemsetler und habe schon Jahre kein Physik mehr gemacht, daher fällt es mir im Moment etwas schwer mich wieder in die Physik (oder Mathematik oder wie auch immer) "reinzudenken"

Der Betrag ist doch (mal ganz minimalistisch ausgedrückt)
einfach nur das weglassen des - schätze mal das das bei den Vektoren wohl genauso ist

das heißt wenn ich also den betrag meiner beiden Vektoren nehme und duch 1 teile erhalte ich die jeweiligen Einheitsvektoren?

Vielen Dank!!!!  

Bezug
                        
Bezug
Bahnkurve: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:44 Mi 01.11.2006
Autor: chrisno


> Naja bin Erstsemsetler und habe schon Jahre kein Physik
> mehr gemacht, daher fällt es mir im Moment etwas schwer
> mich wieder in die Physik (oder Mathematik oder wie auch
> immer) "reinzudenken"
>  
> Der Betrag ist doch (mal ganz minimalistisch ausgedrückt)
>  einfach nur das weglassen des - schätze mal das das bei
> den Vektoren wohl genauso ist

Nein. Wenn Du die Vektoren mit x- und y-Koordinaten schreibst, dann ist der Betrag nach Pythagoras:
[mm] $|\vec{r}| [/mm] = [mm] \sqrt{x^2 + y^2}$. [/mm]

>  
> das heißt wenn ich also den betrag meiner beiden Vektoren
> nehme und duch 1 teile erhalte ich die jeweiligen
> Einheitsvektoren?

Auch nein. Du nimmst die Komponenten der Vektoren und teilst sie jeweils durch den Betrag des Vektors. Diese neuen Komponenten sind die des Einheitsvektors mit der gleichen Richtung

>  
> Vielen Dank!!!!  

Bezug
                                
Bezug
Bahnkurve: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:53 Mi 01.11.2006
Autor: nitro1185

Hallo.

Deine Ideen waren ja gar nicht so schlecht :-)!!!

Beim Betrag eines Vektors ziechne dir das Koordinatensystem(x,yAchsen) und zeichne dir einen beliebigen Vektor ein. Markiere dir die Länge des Vektors(eine Strecke) und Zeichne ebenfalls die Längen der x und y Koordinaten ein. Dann erhälst du ein rechtwinkliges Dreieck wo du den Pythagoras anwenden kannst!!!

Zu den anderen Fragen ein Tipp: Der Vektor [mm] \vec{r} [/mm] zeigt von Mittelpunkt des Koordinatensystems zum Punkt hin. Die Ableitung, also [mm] \vec{v} [/mm] ist SENKRECHT zu [mm] \vec{r} [/mm] und zeigt tangential zur Bahnkurve was übrigens ein Kreis ist!!!

MFG Daniel

Bezug
                                        
Bezug
Bahnkurve: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:27 Do 02.11.2006
Autor: Mirja

Guten Morgen,

Total cool das sich noch jemand mit meiner sicherlich "dummen" Rückfrage auseinandergesetzt hat.

Ihr habt mir echt super weitergeholfen.

Vielen Vielen Dank

Bis zum nächsten Mal :))

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]