matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperBahnen, Länge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gruppe, Ring, Körper" - Bahnen, Länge
Bahnen, Länge < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bahnen, Länge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:44 So 10.01.2010
Autor: moerni

Aufgabe
Sei M eine transitive G-Menge, sei N [mm] \trianglelefteq [/mm] G und sei H die Standgruppe eines Elements von M. Dann zerfällt M in genau [G:NH] verschiedene N-Bahnen, von denen jede die Länge [N:N [mm] \cap [/mm] H] = [NH:H] hat.

Hallo.
Den ersten Teil der Aufgabe habe ich schon. Ich habe gezeigt, dass jede transitive G-Menge von der Form G/H ist mit einer geeigneten Untergruppe H [mm] \le [/mm] G. Ich konnte dann auch zeigen, dass es genau [G:NH] verschiedene N-Bahnen gibt. Jetzt muss ich noch zeigen, welche Länge eine solche N-Bahn hat. Hier komme ich nicht weiter.
Nach Definition ist die Länge einer Bahn gleich dem Index des Stabilisators. Der Stabilisator ist definiert als [mm] G_x=\{g \in G: gx=g\} \le [/mm] G. Ist dann in diesem Fall der Stabilisator [mm] N_x? [/mm] Hat jemand einen Tipp für mich, wie ich vorgehen soll?
Über eine Antwort wäre ich sehr dankbar,
moerni

        
Bezug
Bahnen, Länge: Antwort
Status: (Antwort) fertig Status 
Datum: 13:53 So 10.01.2010
Autor: felixf

Hallo moerni!

> Sei M eine transitive G-Menge, sei N [mm]\trianglelefteq[/mm] G und
> sei H die Standgruppe eines Elements von M. Dann zerfällt

Ist die Standgruppe gleich dem Stabilisator?

> M in genau [G:NH] verschiedene N-Bahnen, von denen jede die
> Länge [N:N [mm]\cap[/mm] H] = [NH:H] hat.
>
>  Hallo.
>  Den ersten Teil der Aufgabe habe ich schon. Ich habe
> gezeigt, dass jede transitive G-Menge von der Form G/H ist
> mit einer geeigneten Untergruppe H [mm]\le[/mm] G. Ich konnte dann
> auch zeigen, dass es genau [G:NH] verschiedene N-Bahnen
> gibt. Jetzt muss ich noch zeigen, welche Länge eine solche
> N-Bahn hat. Hier komme ich nicht weiter.
> Nach Definition ist die Länge einer Bahn gleich dem Index
> des Stabilisators. Der Stabilisator ist definiert als
> [mm]G_x=\{g \in G: gx=g\} \le[/mm] G. Ist dann in diesem Fall der
> Stabilisator [mm]N_x?[/mm] Hat jemand einen Tipp für mich, wie ich
> vorgehen soll?

Da die Menge transitiv ist, sind zwei Stabilisatoren zueinander konjugiert: ist $y = g x$, so kannst du eine Beziehung zwischen [mm] $G_x$ [/mm] und [mm] $G_y$ [/mm] mit Hilfe von Konjugation durch $g$ herstellen. Wie die genau aussieht, musst du jetzt selber bestimmen.

Daraus folgt dann, dass alle Bahnen gleichgross sind. Zur Laenge der Bahnen: es gilt doch $|M| = [mm] \sum_{v \in V} |N_v|$ [/mm] mit einem Vertretersystem $V$ der $N$-Bahnen. Hier ist [mm] $|N_v|$ [/mm] unabhaengig von $v$, und $|V| = [G : N H]$. Also folgt [mm] $|N_v| [/mm] = [mm] \frac{|M|}{[G : N H]}$. [/mm] Kommst du damit evtl. weiter?

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]