matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInterpolation und ApproximationB-Splines
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Interpolation und Approximation" - B-Splines
B-Splines < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

B-Splines: Berechnung
Status: (Frage) beantwortet Status 
Datum: 22:20 Sa 13.05.2006
Autor: Bastiane

Aufgabe
Gegeben seien äquidistante Knoten [mm] t_i:=x_i a) Bestimmen Sie für die quadratischen B-Splines [mm] B_{i,3} [/mm] und die kubischen B-Splines [mm] B_{i,4} [/mm] deren Werte an den Knoten [mm] x_i. [/mm]

Hallo!
Könnte mir vielleicht jemand bei der obigen Aufgabe helfen? Irgendwie haben wir so viele komische Sachen definiert, dass ich jetzt gar nicht weiß, was ich da überhaupt berechnen muss und mit welcher Formel ich anfange. Oder kennt jemand eine wirklich gute Seite, wo solche Beispiele vorgerechnet werden?

Viele Grüße
Bastiane
[cap]


        
Bezug
B-Splines: Antwort
Status: (Antwort) fertig Status 
Datum: 11:15 Mo 15.05.2006
Autor: mathiash

Liebe Bastiane,

Wikipedia hat doch alles, was Du so brauchst.

Es ist

[mm] B_{i,1}(x)=\begin{cases} 1, & x\in [x_i,x_i+1] \\ 0, & sonst\end{cases} [/mm]

(erste Ordnung)

und

[mm] B_{i,p+1}(x)=\frac{x-x_i}{x_{i+p}-x_i}\cdot B_{i,p}(x)+\frac{x_{i+p+1}-x}{x_{i+p+1}-x_{i+1}}\cdot B_{i+1,p}(x) [/mm]

und dann benutzen wir die Äquidistanz [mm] x_{i+p}-x_i=x_{i+p+1}-x_{i+1}=p\cdot [/mm] h und rechnen frohgemut drauf los:

[mm] B_{i,1}(x_i)=B_{i,1}(x_{i+1})=1,\:\: B_{i,1}(x_j)=0, \: j\not\in\{i,i+1\} [/mm]

[mm] B_{i,2}(x_i)= \underbrace{\frac{x_i-x_i}{x_{i+2}-x_i}}_{=0}\cdot B_{i,1}(x_i)\:\: +\:\: \frac{x_{i+3}-x_i}{x_{i+3}-x_i}\cdot \underbrace{B_{i+1,1}(x_i)}_{=0\: Haeh\: ?} [/mm]

Na ja, hoffentlich stimmt's. Dann wär das gleich 0, richtig ?

[mm] B_{i,3}: [/mm] Da brauchen wir die Werte von [mm] B_{i,2}(x_i)=0 [/mm] und [mm] B_{i+1,2}(x_i): [/mm] Letzterer ist

[mm] B_{i+1,2}(x_i)=\frac{x_i-x_{i+1}}{x_{i+2}-x_{i+1}}\cdot B_{i+1,1}(x_i)+\frac{x_{i+3}-x_i}{x_{i+3}-x_{i+2}}\cdot B_{i+2,1}(x_i) [/mm]

Ob das mal stimmt ?

Gruss vorerst,

Mathias



Bezug
                
Bezug
B-Splines: nicht nötig...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:47 Di 23.05.2006
Autor: Bastiane

Lieber Mathias!

> Liebe Bastiane,
>  
> Wikipedia hat doch alles, was Du so brauchst.
>  
> Es ist
>
> [mm]B_{i,1}(x)=\begin{cases} 1, & x\in [x_i,x_i+1] \\ 0, & sonst\end{cases}[/mm]
>  
> (erste Ordnung)
>  
> und
>  
> [mm]B_{i,p+1}(x)=\frac{x-x_i}{x_{i+p}-x_i}\cdot B_{i,p}(x)+\frac{x_{i+p+1}-x}{x_{i+p+1}-x_{i+1}}\cdot B_{i+1,p}(x)[/mm]
>  
> und dann benutzen wir die Äquidistanz
> [mm]x_{i+p}-x_i=x_{i+p+1}-x_{i+1}=p\cdot[/mm] h und rechnen
> frohgemut drauf los:
>  
> [mm]B_{i,1}(x_i)=B_{i,1}(x_{i+1})=1,\:\: B_{i,1}(x_j)=0, \: j\not\in\{i,i+1\}[/mm]
>  
> [mm]B_{i,2}(x_i)= \underbrace{\frac{x_i-x_i}{x_{i+2}-x_i}}_{=0}\cdot B_{i,1}(x_i)\:\: +\:\: \frac{x_{i+3}-x_i}{x_{i+3}-x_i}\cdot \underbrace{B_{i+1,1}(x_i)}_{=0\: Haeh\: ?}[/mm]
>  
> Na ja, hoffentlich stimmt's. Dann wär das gleich 0, richtig
> ?
>  
> [mm]B_{i,3}:[/mm] Da brauchen wir die Werte von [mm]B_{i,2}(x_i)=0[/mm] und
> [mm]B_{i+1,2}(x_i):[/mm] Letzterer ist
>
> [mm]B_{i+1,2}(x_i)=\frac{x_i-x_{i+1}}{x_{i+2}-x_{i+1}}\cdot B_{i+1,1}(x_i)+\frac{x_{i+3}-x_i}{x_{i+3}-x_{i+2}}\cdot B_{i+2,1}(x_i)[/mm]
>  
> Ob das mal stimmt ?
>  
> Gruss vorerst,
>  
> Mathias

Das nächste Mal brauchst du das hier aber nicht alles aufzuschreiben, wenn du's mir doch nachher mit Papier und deinen schönen tollen Stiften live erklärst. :-) Wenn ich daran denke, wie langsam du tippst (oder zumindest wie du gestaunt hast, wie schnell ich tippe, und ich bräuchte für so viele Formeln schon eine Weile...), da mag ich gar nicht dran denken, wie lange du für so viele Formeln brauchst...

Viele Grüße
Bastiane
[cap]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]