matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare GleichungssystemeAx=b mit Nullvektor lösbar?
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Gleichungssysteme" - Ax=b mit Nullvektor lösbar?
Ax=b mit Nullvektor lösbar? < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ax=b mit Nullvektor lösbar?: Allgemeine Frage
Status: (Frage) beantwortet Status 
Datum: 16:03 Sa 19.05.2012
Autor: Jack159

Hallo,

Wenn man prüfen möchte, ob ein Gleichungssystem Ax=b lösbar ist, dann kann man sich ja folgenden Satz zur hilfe nehmen:


Sei A eine Matrix mit den Spaltenvektoren a1, a2,..., am.
1. Ax=b ist lösbar $ [mm] \gdw [/mm] $ b $ [mm] \in [/mm] $ span{a1, a2,..., am}

2. Ax=b ist eindeutig lösbar $ [mm] \gdw [/mm] $ b $ [mm] \in [/mm] $ span{a1, a2,..., am} und rgA=m


Als Beispiel sei nun folgendes Gleichungssystem gegeben (Ich habs mir grad spontan ausgedacht):

[mm] \pmat{ 0 & 1 & 2\\ 0 & 0 & 5 \\ 0 & 3 & 8}\vektor{x1 \\ x2 \\ x3}=\vektor{2 \\ 5 \\ 3} [/mm]

Die Vektoren aus A sind linear abhängig, da sie den Nullvektor enthalten. Demnach dürfte das System nicht eindeutig lösbar sein.
Aber das Gleichungssystem ist eindeutig lösbar....

x2+2x3=2
5x3=5
3x2+8x3

Warum ist das doch eindeutig lösbar? Das Widerspricht ja dem 2. Satz aus dem obigen Satz....


        
Bezug
Ax=b mit Nullvektor lösbar?: Antwort
Status: (Antwort) fertig Status 
Datum: 16:14 Sa 19.05.2012
Autor: barsch

Hallo,

> Aber das Gleichungssystem ist eindeutig lösbar....
>  
> x2+2x3=2
>  5x3=5
>  3x2+8x3
>  
> Warum ist das doch eindeutig lösbar? Das Widerspricht ja
> dem 2. Satz aus dem obigen Satz....
>  

ist es nicht. Du kannst [mm] $x_1$ [/mm] beliebig wählen!

Also ist es nicht eindeutig lösbar.

Gruß
barsch


Bezug
                
Bezug
Ax=b mit Nullvektor lösbar?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:41 Sa 19.05.2012
Autor: Jack159

Hallo,

Stimmt, x1 kommt in meinen 3 Gleichungen garnicht vor und ist somit dann garnicht eindeutig bestimmbar...

Danke erneut für deine Hilfe ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]